Assessing the Possible Direct Effect of Birth Weight on Childhood Blood Pressure: A Sensitivity Analysis

Arnaud Chiolero*, Gilles Paradis, and Jay S. Kaufman

* Correspondence to Dr. Arnaud Chiolero, Institute of Social and Preventive Medicine, Lausanne University Hospital, 10 Route de la Corniche, 1010 Lausanne, Switzerland (e-mail: arnaud.chiolero@chuv.ch or arnaud.chiolero@mail.mcgill.ca).

Initially submitted May 9, 2013; accepted for publication July 24, 2013.

To estimate the possible direct effect of birth weight on blood pressure, it is conventional to condition on the mediator, current weight. Such conditioning can induce bias. Our aim was to assess the potential biasing effect of U, an unmeasured common cause of current weight and blood pressure, on the estimate of the controlled direct effect of birth weight on blood pressure, with the help of sensitivity analyses. We used data from a school-based study conducted in Switzerland in 2005–2006 ($n = 3,762$; mean age = 12.3 years). A small negative association was observed between birth weight and systolic blood pressure (linear regression coefficient $\beta_{bw} = -0.3$ mmHg/kg, 95% confidence interval: $-0.9, 0.3$). The association was strengthened upon adjustment for current weight ($\beta_{bw/C} = -1.5$ mmHg/kg, 95% confidence interval: $-2.1, -0.9$). Sensitivity analyses revealed that the negative conditional association was explained by U only if U was relatively strongly associated with blood pressure and if there was a large difference in the prevalence of U between low–birth weight and normal–birth weight children. This weakens the hypothesis that the negative relationship between birth weight and blood pressure arises only from collider-stratification bias induced by conditioning on current weight.

birth weight; blood pressure; collider-stratification bias; direct effects; sensitivity analyses

Abbreviations: CI, confidence interval; DAG, directed acyclic graph.

Editor’s note: An invited commentary on this article appears on page 12.

Numerous studies have shown a negative association between birth weight, used as a proxy for fetal growth, and blood pressure later in life (1, 2). This association has been the object of intense controversies (3–5). Researchers have argued that the association between birth weight and blood pressure was confounded by genetic or socioeconomic factors (4). Low socioeconomic status and maternal history of hypertension may indeed increase the risk of low birth weight, as well as the risk of elevated blood pressure in the offspring (6). Further, because birth weight is associated with current weight, and current weight (at the time of blood pressure measurement) is a strong determinant of blood pressure, current weight has been treated in many studies as a mediator of the association between birth weight and blood pressure (3). Consequently, adjustment for current weight has been a common analytical practice to estimate the direct effect of birth weight on blood pressure (5). In many studies, the association between birth weight and blood pressure emerged or was accentuated upon conditioning on current weight (1).

However, conditioning on a mediator can produce a biased estimate of the controlled direct effect of an exposure on an outcome if there are unmeasured covariates that are the causes of both the mediator and the outcome (6–10). This is a form of collider-stratification bias (11–14). Several factors are common causes of the mediator current weight and the outcome blood pressure, such as physical activity or diet, and some studies assessing the effect of birth weight on blood pressure have partially accounted for these factors (1). Nevertheless, that may not be sufficient to prevent all biases in the estimate of the direct effect of birth weight on blood pressure because these factors are difficult to measure and, furthermore,
many other factors could be involved, leaving room for important residual confounding on the effect of current weight on blood pressure. It is therefore possible that unmeasured common causes of current weight and blood pressure explain the negative association between birth weight and blood pressure upon conditioning on current weight (15).

By using data from a large, school-based study of children in Switzerland, we aimed to estimate the potential biasing effect of an unmeasured common cause of current weight and blood pressure on the estimate of the possible (controlled) direct effect (i.e., not mediated through current weight) of birth weight on blood pressure, with the help of recently developed sensitivity analysis techniques (12, 16).

MATERIALS AND METHODS

The exposure-mediator-outcome relationship was analyzed for birth weight (exposure), current weight (mediator), and childhood systolic blood pressure (outcome) by using data from a large, school-based study in Switzerland (17, 18). The study took place between September 2006 and May 2006 in the canton of Vaud, Switzerland. All children in sixth grade at all public schools were invited to participate. The study was approved by the research ethics committee of the University of Lausanne (Lausanne, Switzerland). Signed consent was obtained from the parents and children. A total of 5,207 children participated.

Child anthropometry and blood pressure

Measurements were performed by trained staff. Children wore light garments and no shoes. Weight and height were measured with precision electronic scales (to the nearest 0.1 kg) and fixed stadiometers (to the nearest 0.1 cm). Blood pressure measurements were obtained to the nearest 1 mmHg with a clinically validated oscillometric device (Omron M6, Omron Healthcare Europe BV, Hoofddorp, the Netherlands) (19). The midarm circumference was measured and the cuff width adapted accordingly (i.e., pediatric or normal cuff for a midarm circumference of 17.0–21.9 cm or 22.0–32.0 cm, respectively). During 1 visit, 3 measurements of blood pressure were taken on the right arm at 1-minute intervals after a rest of at least 3 minutes, with the child in a seated position. The average of the 2 last readings was used for the analysis.

“Overweight” and “obesity” were defined according to the sex- and age-specific body mass index (weight (kg)/height (m)²) criteria of the International Obesity Task Force (20). Herein, the term “overweight” encompasses both categories. “Elevated systolic blood pressure” was defined as systolic blood pressure equal to or above the US reference sex-, age-, and height-specific 95th percentile (21). “Low birth weight” was defined as birth weight below 2,500 g (22).

Child health behaviors

Children completed a self-administered, semiquantitative questionnaire about sedentary behaviors, physical activity, and dietary habits. The questionnaire had been pretested for understandability by 37 children. Sedentary behaviors were assessed by daily television viewing time (assessed by questions for each day of the week; responses were not watched or watched for <1 hour, 1–2 hours, 3–4 hours, or >4 hours) and by daily time spent playing video games on a console or the Internet (average number of sessions per week and average time spent per session). Questions about physical activity and food consumption were based on questions used in the international Health Behaviour in School-aged Children Study (23). Physical activity was estimated by daily walking time and by the number of days per week they participated in a session of intense leisure physical activity (physical activity resulting in perspiring or deep breathing). The frequency of the intakes of fruits, vegetables, candies, chocolates, chocolate bars, sugar-sweetened drinks, and chips was estimated by the question, “On how many days per week do you usually eat X?” (responses were <1 day/week, 1 day/week, 2–4 days/week, 5–6 days/week, 7 days/week, or several times every day).

Mother data

Mothers completed a structured questionnaire at home enquiring about their educational level, current weight and height, history of hypertension, and history of smoking during pregnancy. They were also asked about breastfeeding (yes/no), gestational age and birth weight of the child, and educational level of the father. Educational level was defined as the highest degree completed by either parent and was used as a proxy for socioeconomic status of the child.

Analyses

A causal mediation analysis framework was used to assess the possible controlled direct effect of birth weight on systolic blood pressure not mediated through current weight (12, 13). Under the assumption of no unmeasured confounding factors, this controlled direct effect may be interpreted as the between-individual difference in systolic blood pressure for a difference of 1 kg of birth weight, if all individuals were forced to have the same values of current weight and of all confounding factors (9).

Measured common causes of birth weight and systolic blood pressure (i.e., potential exposure-outcome confounding factors (CI)) and of current weight and systolic blood pressure (i.e., potential mediator-outcome confounding factors (C2)) were identified with directed acyclic graphs (DAGs) (24, 25) on the basis of background knowledge (21, 26) (Figure 1). Data on the following common causes of birth weight and systolic blood pressure were available: maternal socioeconomic status, smoking, body weight, and hypertension status. Data on the following common causes of current weight and systolic blood pressure were available: breastfeeding, sedentary behaviors, physical activity, and diet of the child.

A set of a linear regression analyses were fitted as follows: model 1) systolic blood pressure = \(\alpha + \beta_{bw} \times \text{birth weight} \) to estimate the unadjusted total effect of birth weight on blood pressure (Figure 1A); model 2) systolic blood pressure = \(\alpha + \beta_{bw} \times \text{birth weight} + \beta_{i} \times CI \) (Figure 1B) to estimate the adjusted total effect of birth weight on blood pressure accounting for measured exposure-outcome confounding variables.
(C1); model 3) systolic blood pressure = $\alpha + \beta_{bw} \times \text{birth weight} + \beta_{cw} \times \text{current weight} + \beta_{1} \times C1$ to estimate the adjusted controlled direct effect of birth weight on blood pressure accounting for measured exposure-outcome confounding variables (C1) (Figure 1B); and model 4) systolic blood pressure = $\alpha + \beta_{bw} \times \text{birth weight} + \beta_{cw} \times \text{current weight} + \beta_{1} \times C1 + \beta_{2} \times C2$ to estimate the adjusted controlled direct effect of birth weight on blood pressure accounting for measured exposure-outcome (C1) and mediator-outcome (C2) confounding variables (Figure 1C). For didactic reasons, only 1 factor $C1$ and 1 factor $C2$ are displayed in the formulae above and shown in the DAGs whereas, in fact, multiple variables were included in the analyses at each of the $C1$ and $C2$ nodes.

Because the effect of birth weight on systolic blood pressure could potentially differ across different levels of current weight (3), an additional model was fitted with a product interaction term between birth weight and current weight. No significant association was found between the interaction term and systolic blood pressure ($P = 0.39$), suggesting that the joint effects of birth weight and current weight are approximately additive in the adjusted model.

By using the results of model 4, we conducted sensitivity analyses to assess the effect of U, an unmeasured common cause of current weight and systolic blood pressure (Figure 2), on the estimate of the controlled direct effect of birth weight on systolic blood pressure. We used the method recently developed by VanderWeele (12, 16). We first assumed that U was a binary variable and that it affected systolic blood pressure by the same magnitude in low–birth weight (<2.5 kg) and normal–birth weight (≥2.5 kg) children. Second, we defined sensitivity parameter g as the effect of U on systolic blood pressure, considering a wide range of g values representing changes of -5, -2.5, +2.5, or +5 mmHg in systolic blood pressure. Third, we defined sensitivity parameter d as the difference in the prevalence of U when comparing low–birth weight children and normal–birth weight children with current weight set at a given value (in our case, current weight was set at the sample mean value). This difference in the prevalence is due to the association between U and current weight and to the conditioning on current weight, inducing an association between U and birth weight. We considered d values of -40%, -20%, -10%, $+10\%$, $+20\%$, or $+40\%$. We then subtracted the product of $g \times d$ for each possible combination of g and d from the β_{bw} coefficient (and upper and lower bounds of the 95% confidence interval (CI)) derived from model 4 to obtain corrected β_{bw} coefficients and confidence intervals under each confounding specification.

VanderWeele (16) notes that the following 3 simplifying assumptions must be met to obtain valid estimates when
using this sensitivity method: 1) U and birth weight are not associated conditional on C1 (this assumption would be violated if U had an effect on birth weight or if birth weight had an effect on U); 2) there is no interaction on the additive scale between U and birth weight and between U and C1; and 3) U and C1 are not associated conditional on birth weight and current weight (this assumption would be violated if U causes C1 or if C1 causes U). Assumptions 1 and 3 hold according to the DAG of Figure 1C, but violations of the assumption 2 cannot be excluded.

RESULTS

Characteristics of participants with complete data (n = 3,762) are shown in Table 1. The mean age of participants was 12.3 (range, 10.1–14.9) years. The proportion of overweight was lower in children with low birth weight (10%, 95% CI: 6%, 15%) compared with children with normal birth weight (13%, 95% CI: 12%, 24%). The proportion of elevated systolic blood pressure was higher in low–birth weight children (15%, 95% CI: 11%, 21%) compared with normal–birth weight children (11%, 95% CI: 10%, 12%), and higher in overweight children (23%, 95% CI: 20%, 27%) compared with nonoverweight children (9%, 95% CI: 8%, 10%). The Spearman correlation coefficients were 0.15 between birth weight and current weight, −0.02 between birth weight and systolic blood pressure, and 0.27 between current weight and systolic blood pressure.

Results of successive linear regression analyses of systolic blood pressure on birth weight are shown in Table 2. Simple regression (without adjustment) of systolic blood pressure on birth weight analysis revealed a small negative association between birth weight and systolic blood pressure (model 1). Upon adjustment for measured common causes of birth weight and systolic blood pressure, the association did not change substantially and remained slightly negative (model 2). The association was strengthened upon adjustment for current weight and became substantially negative (model 3). There was a positive conditional association between current weight and systolic blood pressure. Finally, in model 4, additional adjustment for measured common causes of current weight and systolic blood pressure did not change the association between birth weight and systolic blood pressure, which remained substantially negative (βbw = −1.5 mmHg/kg, 95% CI: −2.1, −0.9).

Results of the sensitivity analyses assuming the existence of U, an unmeasured binary common cause of current weight and systolic blood pressure, are shown in Table 3. After accounting for U, the association between birth weight and systolic blood pressure (upon adjustment for current weight) was close to the null only if U was very strongly and negatively associated with blood pressure (g ≤ −2.5 mmHg) and if the prevalence of U was much higher in low–birth weight children compared with normal–birth weight children (d ≥ +20%); reciprocally, it was also close to the null if U was very strongly and positively associated with blood pressure (g ≥ +2.5 mmHg) and if the prevalence of U was much lower in low–birth weight children compared with normal–birth weight children (d ≤ −20%).

Table 1. Characteristics of Participants (n = 3,762; 1,880 boys and 1,882 girls), Canton de Vaud, Switzerland, 2005–2006

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>12.3 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>43.8 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Height, cm</td>
<td>153.3 (7.5)</td>
<td></td>
</tr>
<tr>
<td>Body mass index<sup>a</sup></td>
<td>18.5 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Overweight or obese</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Birth weight, kg</td>
<td>3.3 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Low birth weight</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>113 (10)</td>
<td></td>
</tr>
<tr>
<td>Elevated systolic blood pressure</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Sedentary behaviors and physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing television, hours/day</td>
<td>1.3 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Playing games on a screen, hours/day</td>
<td>0.7 (0.6)</td>
<td></td>
</tr>
<tr>
<td>Walking, hours/day</td>
<td>0.5 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Intense leisure physical activity, sessions/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1–4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Dietary intakes (frequency)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 time/week</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>>1 time/week</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>≥1 times/week</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 time/week</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>>1 time/week–<1 time/day</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>≥1 times/day</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Sugar-sweetened drinks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 time/week</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>>1 time/week–<1 time/day</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>≥1 times/day</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1 time/week</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>>1 time/week–<1 time/day</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>≥1 times/day</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maternal characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index<sup>a</sup></td>
<td>22.9 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Hypertension diagnosis</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Smoking during pregnancy</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Child breastfeeding</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.
^a Weight (kg)/height (m)².
whether collider-stratification bias could explain the well-described negative association between birth weight and blood pressure upon adjustment for current weight. We show that the negative association between birth weight and systolic blood pressure upon adjustment for current weight among school children aged 12 years was not easily explained by an unmeasured common cause of current weight and systolic blood pressure. Because, in these data, a null controlled direct effect could be obtained only with implausible values of the sensitivity parameters, the observed negative conditional association probably does not result from a collider-stratification bias alone.

We observed a small negative association between birth weight and systolic blood pressure, which was substantially strengthened upon adjustment for current weight. This is consistent with numerous other studies. For instance, in a review of 55 studies, Huxley et al. (1) identified 53 studies showing a negative association between birth weight and systolic blood pressure. In 12 studies with more than 1,000 participants each, the inverse-variance–weighted estimate of the regression coefficient for birth weight on systolic blood pressure was -0.4 mmHg/kg without adjustment for current weight and -0.6 mmHg/kg with adjustment for current weight. More recently, in a large sample ($n = 378,707$) of Swedish men aged 18 years, Lawlor et al. (2) found negative associations of $-0.17 \text{ mmHg per standard deviation of birth weight and } -0.31 \text{ mmHg per standard deviation of birth weight with adjustment for current weight. The effect sizes differed between these studies and tended to be weaker than in our study.

Our study indicates that an unmeasured binary confounder must be relatively strongly associated with current weight and blood pressure to induce the negative association observed between birth weight and systolic blood pressure without there being a true direct effect. The existence of such a factor U not captured in our data set is doubtful. Indeed, it would be difficult to assert that 1 unique factor is involved, because an

Table 2. Results of Successive Linear Regression Models for the Association Between Birth Weight and Systolic Blood Pressure ($n = 3,762$), Canton de Vaud, Switzerland, 2005–2006

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>β mmHg/kg</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>Birth weight</td>
<td>-0.3</td>
<td>$-0.9, 0.3$</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Current weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>Birth weight</td>
<td>-0.4</td>
<td>$-1.1, 0.2$</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Current weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>Birth weight</td>
<td>-1.4</td>
<td>$-2.0, -0.8$</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Current weight</td>
<td>0.4</td>
<td>$0.3, 0.4$</td>
<td><0.001</td>
</tr>
<tr>
<td>4f</td>
<td>Birth weight</td>
<td>-1.5</td>
<td>$-2.1, -0.9$</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Current weight</td>
<td>0.3</td>
<td>$0.3, 0.4$</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.

a All models are adjusted for age and sex.

b Regression coefficient for birth weight or current weight.

c Model 1 fitted without conditioning.

d Model 2 fitted with conditioning on measured common causes of birth weight and systolic blood pressure (i.e., maternal socioeconomic status, smoking, body weight, and hypertension status).

e Model 3 fitted with conditioning on current weight and on measured common causes of birth weight and systolic blood pressure (i.e., maternal socioeconomic status, smoking, body weight, and hypertension status and of current weight and systolic blood pressure).

f Model 4 fitted with conditioning on current weight and on measured common causes of birth weight and systolic blood pressure and of current weight and systolic blood pressure (i.e., breastfeeding, sedentary behavior, physical activity, and diet of the child).

DISCUSSION

To our knowledge, this is the first attempt to estimate quantitatively, by using recently developed sensitivity analyses, whether collider-stratification bias could explain the well-described negative association between birth weight and blood pressure upon adjustment for current weight. We show that the negative association between birth weight and systolic blood pressure upon adjustment for current weight among school children aged 12 years was not easily explained by an unmeasured common cause of current weight and systolic blood pressure. Because, in these data, a null controlled direct effect could be obtained only with implausible values of the sensitivity parameters, the observed negative conditional association probably does not result from a collider-stratification bias alone.

We observed a small negative association between birth weight and systolic blood pressure, which was substantially strengthened upon adjustment for current weight. This is consistent with numerous other studies. For instance, in a review of 55 studies, Huxley et al. (1) identified 53 studies showing a negative association between birth weight and systolic blood pressure. In 12 studies with more than 1,000 participants each, the inverse-variance–weighted estimate of the regression coefficient for birth weight on systolic blood pressure was -0.4 mmHg/kg without adjustment for current weight and -0.6 mmHg/kg with adjustment for current weight. More recently, in a large sample ($n = 378,707$) of Swedish men aged 18 years, Lawlor et al. (2) found negative associations of $-0.17 \text{ mmHg per standard deviation of birth weight and } -0.31 \text{ mmHg per standard deviation of birth weight with adjustment for current weight. The effect sizes differed between these studies and tended to be weaker than in our study.

Our study indicates that an unmeasured binary confounder must be relatively strongly associated with current weight and blood pressure to induce the negative association observed between birth weight and systolic blood pressure without there being a true direct effect. The existence of such a factor U not captured in our data set is doubtful. Indeed, it would be difficult to assert that 1 unique factor is involved, because an

Table 3. Results of the Sensitivity Analyses for the Association Between Birth Weight and Systolic Blood Pressure

<table>
<thead>
<tr>
<th>d b</th>
<th>$g = -5.0 \text{ mmHg}$</th>
<th>$g = -2.5 \text{ mmHg}$</th>
<th>$g = 0.0 \text{ mmHg}$</th>
<th>$g = +2.5 \text{ mmHg}$</th>
<th>$g = +5.0 \text{ mmHg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>95% CI</td>
<td>β</td>
<td>95% CI</td>
<td>β</td>
<td>95% CI</td>
</tr>
<tr>
<td>$-40%$</td>
<td>-3.5</td>
<td>$-4.1, -2.9$</td>
<td>-2.5</td>
<td>$-3.1, -1.9$</td>
<td>-0.5^{e}</td>
</tr>
<tr>
<td>$-20%$</td>
<td>-2.5</td>
<td>$-3.1, -1.9$</td>
<td>-2.0</td>
<td>$-2.6, -1.4$</td>
<td>-1.0</td>
</tr>
<tr>
<td>$-10%$</td>
<td>-2.0</td>
<td>$-2.6, -1.4$</td>
<td>-1.7</td>
<td>$-2.4, -1.1$</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+10%$</td>
<td>-1.0</td>
<td>$-1.6, -0.4$</td>
<td>-1.2</td>
<td>$-1.9, -0.6$</td>
</tr>
<tr>
<td></td>
<td>$+20%$</td>
<td>-0.5^{e}</td>
<td>$-1.1, 0.1^{e}$</td>
<td>-1.0</td>
<td>$-1.6, -0.4$</td>
</tr>
<tr>
<td></td>
<td>$+40%$</td>
<td>0.5^{e}</td>
<td>$-0.1, 1.1^{e}$</td>
<td>-0.5^{e}</td>
<td>$-1.1, 0.1^{e}$</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.

a Models are adjusted for current weight, measured common causes of birth weight and systolic blood pressure, measured common causes of current weight and systolic blood pressure, and U, an unmeasured common cause of current weight and systolic blood pressure. All models are also adjusted for age and sex.

b Sensitivity parameter d is the difference in prevalence of U between low–birth weight and normal–birth weight children with current weight set at a given value.

c Sensitivity parameter g is the effect of U on systolic blood pressure.

d Regression coefficient for birth weight.

e Coefficient is close to the null.

effect of ±2.5 or ±5.0 mmHg on blood pressure was required for \(U \) to explain the negative association between birth weight and systolic blood pressure. This corresponds to a relatively strong effect if one considers that substantially reducing salt intake decreases blood pressure, on average, by 2.4 mmHg and 5.4 mmHg in normotensive and hypertensive patients, respectively (27), and that loop diuretics, powerful antihypertensive drugs, decrease systolic blood pressure, on average, by 8 mmHg (28). On the other hand, several factors taken together could have a strong effect on current weight and systolic blood pressure. However, a nearly perfect cooccurrence of all of these factors would be necessary to sum their effects on systolic blood pressure. The number of such jointly exposed individuals in any given population would most likely be quite limited.

Our study has some limitations. We conducted post hoc analyses on data that were not designed to address our research question. Errors in the specification and measurement of potential birth weight–systolic blood pressure and current weight–systolic blood pressure confounders are inevitable, leaving room for residual confounding. Furthermore, we assumed linear relationships between the variables of interest. More complex, nonlinear modeling could further reduce residual confounding. The sensitivity method can be adapted in case of a nonlinear relationship between the variables. Nonparametric sensitivity analysis techniques are also available (29). If a variable is a common cause of birth weight, current weight, and blood pressure, an adjustment for this variable is necessary to estimate the direct effect. However, if such a variable is not measured, the sensitivity method cannot be used because 1 assumption is violated, that is, no effect of \(U \) on the exposure birth weight. We did not find any evidence of exposure-mediator interactions on the additive scale (18). However, numerous studies suggest that there must be an interaction between birth weight and weight later in life for their effects on blood pressure to exist. Indeed, one might expect blood pressure to be highest in individuals with low birth weight who have had the largest weight gain in the postnatal period (so called “catch-up growth”) or later in life (3, 30). Selection bias is also possible because we restricted our analyses to the 72% of children with complete data. The estimate of the association between birth weight and blood pressure could be biased if both birth weight and blood pressure differed between children with missing data and children with complete data.

Further, assuming that birth weight (or current weight) has causal effects per se on systolic blood pressure is problematic, because we posit no specific intervention that would change this variable (31–33); different interventions to modify birth weight may lead to different levels of blood pressure even if they lead, on average, to the same birth weight. Indeed, suppose that \(Z \) is a well-defined intervention modifying birth weight (Figure 3A). \(Z \) is a manipulable intervention and could be, for example, the prescription of nicotine patches to help pregnant women quit smoking \((Z_a) \) or the prescription of supplement food to promote weight gain in pregnant women \((Z_b) \). Although both interventions could lead to a similar increase in birth weight, their effects on blood pressure (and on current weight) could be different. For example, \(Z_a \) could cause a decrease in blood pressure (34), whereas \(Z_b \) could cause an increase in blood pressure (35). To account for this potential violation of the consistency assumption (i.e., that the effect of the exposure depends on how the child came to be exposed) for the causal effects of birth weight and current weight on blood pressure, the DAG, adapted from Weinger (4) (Figure 3B), could better depict the reality of the causal relationship between these variables. In this DAG, \(Z \) has direct effects on birth weight and current weight and blood pressure and, as a common cause, can induce (noncausal) associations among these 3 variables.

The estimation of direct and indirect effects of birth weight on blood pressure can notably help estimate the proportion of a total effect of birth weight on blood pressure that would be prevented by fixing the mediator current weight through an intervention (36). In our situation, this is identifiable only because of the absence of additive interaction, which implies that the controlled direct effect is decomposable, such that direct and indirect effects sum to the total effect. Nevertheless,
the practical implication of such estimation is uncertain, because there is no well-defined intervention proposed to manipulate body weight, and different potential interventions to change body weight could have different effects on blood pressure (32). We did not discuss natural direct and indirect effects of birth weight on systolic blood pressure, although the absence of additive scale interaction implies that the controlled and natural direct effects are equivalent.

In conclusion, our data are compatible with the existence of a direct and negative causal effect of birth weight on systolic blood pressure in children, which is not mediated by current weight, and this effect is not plausibly explained by a collider-stratification bias.

ACKNOWLEDGMENTS

Author affiliations: Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland (Arnaud Chiolero); and the Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada (Gilles Paradis, Jay S. Kaufman).

We thank Dr. Tyler VanderWeele, Harvard School of Public Health, for his generous help in the specification of the sensitivity analyses.

This work was presented at the Society of Epidemiology Research Annual Meeting, June 25, 2013, Boston, Massachusetts. Generous feedback on this presentation was received from Drs. Charles Poole, Jan Vandenbroucke, and Allen Wilcox. The school-based study was funded by the Swiss National Science Foundation (grant 3200B0-109999/1).

Conflict of interest: none declared.

REFERENCES

27. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic

Invited Commentary

Invited Commentary: Identifying the Improbable, the Value of Incremental Insights

Penelope P. Howards*

* Correspondence to Dr. Penelope P. Howards, Department of Epidemiology, Emory University, 1518 Clifton Road, NE, CNR 3029, Atlanta, GA 30322 (e-mail: penelope.howards@emory.edu).

Initially submitted August 9, 2013; accepted for publication August 26, 2013.

There has been a long-standing debate about whether birth weight directly affects adult blood pressure, or whether the association is entirely mediated through current weight. In this issue of the *Journal*, Chiolero et al. (*Am J Epidemiol*. 2014;179(1):4–11) quantitatively evaluate whether bias from an unmeasured confounder of the relationship between current weight and current blood pressure could artificially create the appearance of a direct effect of birth weight on current blood pressure. Their results suggest that the conditions required to induce such a bias are improbable, given their assumptions. This insight moves the debate forward, and the next step is to evaluate their assumptions with similar quantitative rigor. It is also useful at this stage to reflect on the origins of the research question and the substantive implications of the debate. In particular, is birth weight actually a causal actor or a proxy for some other factor, such as fetal environment? In other words, would an intervention that changed birth weight affect current blood pressure? Speculation can produce many plausible scenarios, but our intuitions are often misleading. It is quantitative evaluation of these scenarios that provides incremental insights. Chiolero et al. illustrate an elegant application of theoretical methods to a substantive question.

Abbreviation: DAG, directed acyclic graph.

In *The Sign of the Four*, Sherlock Holmes says, “...when you have eliminated the impossible, whatever remains, however improbable, must be the truth” (1, p. 111). In the realm of fiction, this maxim seems eloquently persuasive, but the real world is rarely so simple. Instead of separating the impossible from the improbable, we are forced to weigh the probability of numerous possible explanations against one another. Furthermore, our ability to distinguish between improbable and probable inferences is often flawed because our intuitions lead us astray (2). We can temper the unrecognized limitations of our qualitative reasoning to some degree through quantitative bias analyses. In the current issue of the *Journal*, Chiolero et al. (3) elegantly illustrate the value of such quantitative analyses by applying them to a research question that has been the subject of a long-standing debate.

Ever since Barker began promoting the idea that adult disease could have fetal origins (4), researchers have tried to assess whether birth weight has an effect on blood pressure later in life (4–7). One area of uncertainty has been the role that current weight might play in the observed association between birth weight and current blood pressure (4–10). Chiolero et al. (3) use directed acyclic graph (DAG) theory and bias analysis to evaluate whether birth weight could have an effect on current blood pressure that is not mediated through current weight in sixth-grade children. They focus on whether such an effect could be due to an unmeasured confounder of the relationship between current weight and current blood pressure.

The application of DAG theory to the interplay between birth weight, current weight, and current blood pressure has highlighted the possibility that current weight is an intermediate between birth weight and current blood pressure (10, 11). This hypothesis introduces at least 2 possible research questions. One is whether there is any effect of birth weight on current blood pressure, and the other is whether such an effect is entirely mediated through current weight. If current weight is an intermediate (e.g., as illustrated in Figures 1, 2, and 3A in Chiolero et al. (3)) and the question is whether birth weight has an effect on current blood pressure, then an effect...
estimate that is not adjusted for current weight—but is adjusted for any confounders of the relationship between birth weight and current blood pressure (as represented by $C1$ in Chiolero et al. (3))—would estimate the total effect of birth weight on current blood pressure.

If, as in Chiolero et al. (3), the question is whether birth weight has any effect on current blood pressure that is not mediated through current weight, then it is necessary to adjust for current weight, as well as any confounders of the relationship between birth weight and current blood pressure (i.e., $C1$) and any confounders of the relationship between current weight and current blood pressure (i.e., $C2$ and U in Chiolero et al. (3)) (12). The resulting estimate is often referred to as the “direct effect” of birth weight on current blood pressure. However, it is likely that there are unidentified mediators between birth weight and current blood pressure, so a more accurate label would be “the effect of birth weight on current blood pressure that is not mediated through current weight.”

The specific problem that Chiolero et al. address is the possibility that the estimated “direct” effect of birth weight on current blood pressure is due to an unmeasured confounder (i.e., U) of the relationship between current weight and current blood pressure (3, 12). They evaluate under what conditions bias from such an unmeasured confounder could create the appearance of a “direct” effect, when in fact there was no such effect. Given their assumptions, it appears that a spurious association would be observed only under fairly extreme conditions. Specifically, the prevalence of U would need to differ by 20% or more between low–birth weight and normal–birth weight individuals for a given current weight, and U would need to be strongly associated with current blood pressure (regression coefficient of ≥ 2.5 or ≤ -2.5) (3). Although these conditions are not impossible, less extreme conditions are more probable.

Given the authors’ findings, the next step might be to evaluate their key assumptions with similar rigor. Assumptions are necessary in the exploration of any research question, and those made by Chiolero et al. (3) are clearly specified and reasonable as a first step. However, relaxing these assumptions raises other possible noncausal reasons that birth weight could appear to have a “direct” effect on current blood pressure. Chiolero et al. mention some of these alternative explanations in their thoughtful discussion.

First, their analysis is based on a DAG in which birth weight causes current weight and current blood pressure, but it is possible, as Weinberg posited (9), that birth weight does not have an effect on either. Chiolero et al. (3) illustrate 1 version of this possibility in their Figure 3B. In this DAG, the association between birth weight and both current weight and current blood pressure is entirely due to confounding, including confounding by an unidentified factor Z. This DAG cannot be dismissed easily, and it (or a variant) is consistent with the original hypothesis put forth by Barker (4). Barker posited that adult disease was affected by an adverse fetal environment during critical windows of development but indicated that the specific mechanism was still in the realm of speculation. Although Chiolero et al. (3) intend Z in their Figure 3A to represent an intervention that affects birth weight, Figure 3A can be repurposed to illustrate a scenario in which Z represents an adverse fetal environment that affects birth weight, which in turn affects both current weight and current blood pressure. In this scenario, the adverse fetal environment would affect current blood pressure through birth weight. In contrast, their Figure 3B could illustrate an alternative scenario in which birth weight is only a proxy for the fetal environment (Z) and does not have “direct” effects of its own.

Assuming that the objective of this line of research is to identify factors on which we can intervene to reduce hypertension, the distinction between these 2 DAGs is important. If Figure 3A is correct, then an intervention to increase birth weight would reduce blood pressure later in life. However, even in this situation, different interventions to change birth weight could have different effects (3, 13). If, however, Figure 3B is correct, then an intervention on birth weight would be beneficial only if it also altered the adverse fetal environment (i.e., Z) during the critical window. It seems possible that even a well-defined intervention on birth weight could affect birth weight without affecting Z. For example, a maternal smoking cessation intervention during the second trimester of pregnancy might decrease the risk of having a low–birth weight baby (14, 15) but would occur too late to prevent any effects of maternal smoking on fetal cardiovascular development during the first trimester.

Second, even if birth weight directly affects blood pressure, the bias analysis method implemented by Chiolero et al. required additional assumptions (3, 16). Two assumptions in particular were illustrated in their DAG. The first assumption was that U is not associated with birth weight conditional on $C1$. The authors point out that this assumption could be violated if U had an effect on birth weight or birth weight had an effect on U (3). This assumption could also be violated if there was a common cause of birth weight and U. A second assumption was that U and $C1$ are independent conditional on birth weight and current weight. As with the first assumption, there are several possible theoretical scenarios that would lead to a violation of this assumption (e.g., a common cause of $C1$ and U). Although it is easy to propose scenarios that might lead to a violation of either of these assumptions, the identification of such possibilities is of limited value without a sense of their probability and, more specifically, their likely effect on the estimated “direct” effect of birth weight on current blood pressure. Given the limitations of our intuitions (2), potential bias from these alternative scenarios ideally would be evaluated quantitatively. Methods that allow the above assumptions to be relaxed (16), but these methods are more complex to implement than the method illustrated by Chiolero et al. (3).

Sherlock Holmes’ eloquent reasoning, quoted at the beginning of this commentary, ignores the fact that in the real world, even after the elimination of the impossible, there remain numerous explanations that are plausible to varying degrees. Chiolero et al. (3) provide a model of how theoretical epidemiologic methods can be applied to a long-debated research question and can incrementally move the debate toward a resolution. They provide quantitative results that demote 1 hypothesis from probable to plausible but improbable. This insight does not resolve all questions regarding the “direct” effect of birth weight on current blood pressure, but it moves our knowledge forward and points us toward the next level of complexity that should be addressed.
ACKNOWLEDGMENTS

Author affiliation: Department of Epidemiology, Emory University, Atlanta, Georgia (Penelope P. Howards).
The author thanks Timothy Lash, Kathleen Hartnett, and Helen Chin for their comments on an earlier draft of this commentary.
Conflict of interest: none declared.

REFERENCES

Letters to the Editor

RE: “ASSESSING THE POSSIBLE DIRECT EFFECT OF BIRTH WEIGHT ON CHILDHOOD BLOOD PRESSURE: A SENSITIVITY ANALYSIS”

In a recent article, Chiolero et al. (1) confirmed that the association between birth weight and blood pressure is strengthened upon adjustment for current weight. This phenomenon has been consistently reported in the literature, but its interpretation is still debatable (2). I would like to ask the following question. Are those estimates useful for predicting future blood pressure or for informing us about the magnitude of blood pressure reduction with a successful birth-weight gain?

With adjustment for current weight, a 1-kg increase in birth weight in Chiolero et al.’s study was associated with a 1.40-mm Hg reduction in systolic blood pressure, while a 1-kg decrease in current weight was associated with a 0.40-mm Hg blood pressure reduction (see model 3 in Chiolero et al.’s Table 2 (1)). Those values may give us a mistaken impression that birth weight has a stronger effect on blood pressure than current weight. However, 1 kg in birth weight is not comparable to 1 kg in current weight, because they have substantially different population distributions, as reflected by their standard deviations (SDs): 0.50 kg for birth weight and 0.1 kg for current weight.

To present the magnitude of the effects of birth weight and current weight on a comparable scale, I have recalculated the blood pressure reduction values corresponding to a 1-SD increase in birth weight and a 1-SD decrease in current weight, respectively, based on the SDs and regression coefficients in Chiolero et al.’s Tables 1 and 2 (1).

The effect estimate without adjustment for current weight is referred to as the “total effect” of birth weight on blood pressure, and the estimate with adjustment for current weight is referred to as the “direct effect” (1). Since the future “current weight” for predicting an infant’s blood pressure later in life is not known, only the “total effect” can be used for this purpose. A 1-SD increase in birth weight without adjustment for current weight is associated with a 0.15 (0.30 × 0.50)-mm Hg reduction in blood pressure, which is only 4% of the comparable effect (0.40 × 9.10 = 3.64 mm Hg) of the current weight. Therefore, birth weight has little predictive value for future blood pressure.

With adjustment for current weight, a 1-SD increase in birth weight is associated with a 0.70 (1.40 × 0.50)-mm Hg reduction in blood pressure, which is only one-fifth that for a 1-SD decrease in current weight. Although no randomized trials have assessed whether such a “direct effect” of birthweight gain on blood pressure is actually achievable, we could deduce that its value may overstate the magnitude of blood pressure reduction associated with weight gain. The theoretical “direct effect” was estimated on the basis of an assumption of increasing birth weight without increasing current weight. However, birth weight is strongly and positively associated with current weight (3–7). Falkner et al. (8) reported that among children aged 11–14 years, those with normal birth weight were 8.9 kg heavier than those with low birth weight. Any intervention that increases birth weight is likely to increase current weight, which is positively associated with blood pressure. The increase in current weight could offset the “direct effect” (0.70 mm Hg) of birth weight.

Therefore, relative to the effect of current weight and the population distribution of blood pressure values, birth weight may have no practical value for predicting future blood pressure. Even if an intervention could successfully increase birth weight, it would result in very little actual blood pressure reduction at the individual or population level. On the other hand, the magnitude of potential blood pressure reduction associated with the comparable current weight decrease is substantially higher, which implies that interventions aiming to control current weight are more likely to produce tangible benefits in blood pressure reduction.

ACKNOWLEDGMENTS

Dr. Zhiqiang Wang was supported by the National Health and Medical Research Council of Australia (Research Fellowship APP1042343).

Conflict of interest: none declared.

REFERENCES

THE AUTHORS REPLY

We thank Dr. Wang for his observations (1). Dr. Wang argues that a successful intervention to increase birth weight would have little impact on blood pressures, whereas interventions focused on later-life weight have a much greater potential for population blood pressure reduction (1). However, Dr. Wang may be confusing issues of etiology, effect size, and the public health implications of the relationship between birth weight, current weight, and blood pressure.

In our study, we addressed an etiologic question about the effect of birth weight on blood pressure, by showing that the negative association between birth weight and blood pressure upon adjustment for current weight was not easily explained by collider-stratification bias (2). As mentioned by Dr. Wang and in line with other studies (3), our results also indicated that the effect size of birth weight on blood pressure is quite small compared with the effect of current weight. Nevertheless—and this is where we disagree with Dr. Wang—that does not necessarily imply that the public health implications of the association between birth weight and blood pressure are negligible compared with the implications of later-life body weight.

Indeed, the public health implication is constrained by the existence of implementable interventions to modify either birth weight or later-life weight (4). On the one hand, several interventions (such as encouraging maternal smoking cessation or preventing insufficient weight gain during pregnancy) could increase offspring birth weight and, eventually, reduce blood pressure. On the other hand, besides gastric bypass surgery, there is no easily implementable and efficient intervention for obtaining long-term, substantial body-weight reduction in later life and, hence, for having any “tangible” effect on blood pressure. Indirectly, Dr. Wang also points to a major issue in the assessment of the effect of birth weight or later-life weight on blood pressure—that is, a potential violation of the causal consistency assumption (4), as different interventions changing birth weight or later-life body weight can have very different effects on blood pressure.

Nevertheless, we agree that, if successful, prevention of excess body-weight gain throughout the life course could have a large impact on the prevention of elevated blood pressure (5).

ACKNOWLEDGMENTS

Conflict of interest: none declared.

REFERENCES

Arnaud Chiolero1, Gilles Paradis2, and Jay S. Kaufman2 (e-mail: arnaud.chiolero@chuv.ch)
1 Institute of Social and Preventive Medicine, Lausanne University Hospital, 1010 Lausanne, Switzerland
2 Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A2, Canada

DOI: 10.1093/aje/kwu043; Advance Access publication: March 19, 2014