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Abstract: Inverse probability–weighted marginal structural models 
with binary exposures are common in epidemiology. Constructing 
inverse probability weights for a continuous exposure can be compli-
cated by the presence of outliers, and the need to identify a parametric 
form for the exposure and account for nonconstant exposure vari-
ance. We explored the performance of various methods to construct 
inverse probability weights for continuous exposures using Monte 
Carlo simulation. We generated two continuous exposures and binary 
outcomes using data sampled from a large empirical cohort. The first 
exposure followed a normal distribution with homoscedastic vari-
ance. The second exposure followed a contaminated Poisson distri-
bution, with heteroscedastic variance equal to the conditional mean. 
We assessed six methods to construct inverse probability weights 
using: a normal distribution, a normal distribution with heterosce-
dastic variance, a truncated normal distribution with heteroscedastic 
variance, a gamma distribution, a t distribution (1, 3, and 5 degrees 
of freedom), and a quantile binning approach (based on 10, 15, and 
20 exposure categories). We estimated the marginal odds ratio for 
a single-unit increase in each simulated exposure in a regression 
model weighted by the inverse probability weights constructed using 
each approach, and then computed the bias and mean squared error 
for each method. For the homoscedastic exposure, the standard nor-
mal, gamma, and quantile binning approaches performed best. For 
the heteroscedastic exposure, the quantile binning, gamma, and het-

eroscedastic normal approaches performed best. Our results suggest 
that the quantile binning approach is a simple and versatile way to 
construct inverse probability weights for continuous exposures.

(Epidemiology 2014;25: 292–299)

Inverse probability weighting (IPW) estimators for marginal 
structural models are common in epidemiology. Such estima-

tors can be used to estimate a standardized measure of effect for 
time-fixed exposures1 and account for confounding and selec-
tion bias due to measured time-varying confounders affected 
by prior exposure.2 The use of IPW has also been extended 
to address a number of other methodological issues, including 
time-modified confounding,3 interaction and effect measure 
modification,4,5 spillover effects,6 and effect decomposition.7

Informally, weighted regression models estimate expo-
sure effects in a “pseudo-population” obtained by weighting 
the observed data by the inverse of the conditional probability 
of the observed exposure, rendering exposure independent of 
measured confounders.8,9 Cole and Hernán10 have provided 
guidelines on how to construct inverse probability weights to 
estimate exposure effects. For a binary exposure, individual 
weights are constructed by estimating the predicted probabil-
ity of the observed exposure, often using logistic regression. 
Weights are constructed by taking the inverse of these pre-
dicted probabilities. To obtain asymptotically unbiased expo-
sure effect estimates, correct specification of the model for 
the weights is required.8,9,11 To avoid excessively upweight-
ing individuals, weights are usually stabilized by replacing 
the numerator with the marginal probability of the observed 
exposure.

Inverse probability weights for a continuous exposure 
are constructed in a similar fashion.10–13 However, construct-
ing inverse probability weights for a continuous exposure can 
be complicated by a number of issues not encountered in the 
binary exposure setting, including the need to identify a cor-
rect distributional form for the exposure, the need to account 
for nonconstant exposure variance (heteroscedasticity), and 
the need to deal with outliers that can make highly variable 
weights more likely.
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We explore the performance of six methods to con-
struct inverse probability weights for continuous exposures: 
a standard approach (based on a normal distribution), an 
approach based on the gamma distribution, a heteroscedas-
tic normal approach, a heteroscedastic truncated normal 
approach, a heavy-tailed approach (based on the t distribu-
tion), and a quantile binning approach (based on exposure 
ranks). The gamma and heteroscedastic normal models may 
be more appropriate for exposure distributions in which 
the variance changes as a function of measured covariates. 
The quantile binning and t distribution approach may help 
mitigate issues with highly variable weights because of the 
way in which they handle outliers in the exposure’s distribu-
tion. Finally, quantile binning may be more appropriate for 
markedly nonnormal or heteroscedastic exposure distribu-
tions because it does not rely on distributional assumptions. 
We assess the performance of each method in a simula-
tion study using two exposures generated from data in the 
Québec birth file.

METHODS

Simulated Data
We used Monte Carlo simulation14 to assess the perfor-

mance of each method to construct IPWs for continuous expo-
sures. We used data from the Québec birth file15 to generate 
our simulated data. We extracted information on 1.3 million 
live singleton births that occurred between 1989 and 2008 
(inclusive), including gestational age (in completed weeks), 
maternal and paternal date of birth, and parity (total number 
of previous deliveries). Gestational age at birth was used to 
create a preterm birth indicator defined as less than 37 com-
pleted weeks. We used the preterm birth indicator to set the 
marginal probability of simulated outcome.

We generated 3000 Monte Carlo samples of 1500 
observations each, using covariate information sampled with-
out replacement from the Québec birth file. Covariates were 
maternal age, paternal age, and parity, which we collectively 
denote as C . We simulated two exposures, each with a mean 
defined as:
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where I ( )•  is an indicator function taking on a value of 1 
when the argument (•) is true (0 otherwise), and mage and 
page are maternal and paternal age in years. The first expo-
sure (homoscedastic) followed a normal distribution, defined 
as X1 115= + +µ ε , with ε1 0 2∼ N ( , ). The second exposure 
(heteroscedastic) followed a Poisson distribution with mean = 
variance = µ. To make this exposure continuous, we added to 
it a standard normal random variable. We set negative expo-
sure values equal to zero, yielding a zero-inflated distribution.

For each exposure, we generated a binary outcome fol-
lowing a Bernoulli distribution with
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where α01 11 5= − .  for exposure X1 and α02 8 05= − .  for 
exposure X 2, chosen to render the marginal probability of 
Y  approximately 0.08, which was the proportion of preterm 
births observed in the birth file. To determine the true mar-
ginal value for a single-unit increase in each exposure, we 
estimated the marginal odds ratio for each scenario using the 
method of marginal standardization16 in a simulated data set 
with 4.5 million observations.

For each exposure scenario in each of the 3000 Monte 
Carlo samples, we estimated the marginal log-odds ratio for a 
single-unit increase in the exposure using generalized estimat-
ing equations to obtain robust standard error estimates,17 with 
IPW to account for confounding.9

Statistical Analysis
Stabilized inverse probability weights (sw) were defined as:
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where f• (•) denotes the probability density function with 
mean µ and variance σ 2, X  a continuous exposure, and C  the 
set of confounders. When the exposure is binary, the density 
functions in the numerator and denominator of the stabilized 
weights reduce to the probability mass functions for a binary 
random variable: P X C c( | )= =1  for exposed persons, and 
P X C c( | )= =0  for unexposed persons.9 Thus, the stabilized 
weight equations for a binary exposure are a special case of (1).

The numerator of (1) is used to control the variability 
of the estimator.11(p 584) The marginal exposure density (ie, not 
conditional on C) is a common choice and yields a marginal 
estimate of the exposure-outcome effect.10 When a model for 
the denominator of the stabilized weights is correctly speci-
fied, weighting by sw results in an asymptotically unbiased 
estimator for the true causal effect.11,12 We constructed weights 
defined by sw using six approaches.

Normal IPWs
First, we assumed that f• (•) was a normal density and 

used two generalized linear models with an identity link and 
normal density function to estimate µ and σ 2 for the numera-
tor and denominator of the stabilized weights:
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numerator model : ,Xi i= +µ σ� � �
1 1 1

2
0ε ∼ ( )N

Denominator model : ( , ),Xi i= +µ σ� � �
2 2 2

2
0ε ∼ N

where µ µ β β� � � �
1 2 0= = + C, and where ε� i1 and ε� i2 are the resid-

uals for individual i from the numerator and denominator 
model, respectively.

Standard IPWs assuming homoscedastic variance were 
created by using the predicted means µ� for each person. We 
used the deviance statistic divided by its degrees of freedom 
from a generalized linear model with a normal error distribu-
tion and identity link function as an estimate of σ� for all per-
sons. These estimates were used as parameter estimate values 
for the normal distribution, defined as:
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where (henceforth) k = 1 2,  denotes the numerator or denomi-
nator model.

Inverse probability weights with heteroscedastic variance 
were implemented by further specifying the variance in (2) as a 
function of confounders C . Specifically, we defined a variance 
function18 as σ σ θ� � �

ik k k iC= exp( ) for the denominator mod-
els, and we generated a stabilized weight for each person using 
the predicted mean and variance conditional on covariates. We 
implemented two techniques to obtain heteroscedastic normal 
IPWs: a two-stage approach as in previous work13 and a single-
stage approach. We also used a heteroscedastic truncated normal 
model to construct weights by bounding (2) between ak and bk

, and dividing (2) by Φ Φb ak k k k k k−( ){ } − −( ){ }µ σ µ σ ,  
where Φ{•}  is the normal cumulative distribution function. For 
each exposure, we chose min(Xk)−1 and max(Xk)+1 as the lower 
(ak) and upper (bk) bound, respectively.

Heavy-tailed IPWs
Heavy-tailed IPWs assuming homoscedastic variance 

were created by standardizing residuals from the normal gen-
eralized linear models for the numerator and denominator 
(defined above) and used to generate a numerator and denom-
inator density value for each person from the t distribution, 
defined as:
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where eik
�  is the standardized residual, η represents the degrees 

of freedom for the t distribution, and Γ{ } ( )!i i= −1  repre-
sents the gamma function for argument { }i . For our analysis, 
we used η = 1 3 5, , and . Relative to the normal distribution, 

the t distribution’s heavy tails should mitigate the large 
variation in the weights due to outliers in the far tails of the 
distribution.19,20(p 465) For example, as observed in the birth 
file, a person whose standardized residual value from the 
numerator and denominator model is 5 4.  and 6 8. , respectively, 
will have a weight of approximately 5115,  using the standard 
normal distribution, but a weight of 1 7.  using the t distribution 
with 1 degree of freedom.

Gamma IPWs
Gamma IPWs were obtained by fitting a generalized lin-

ear model with log-link and gamma distribution to estimate a 
gamma scale parameter and each person’s predicted exposure 
value given they were exposed. The density function for the 
gamma IPWs was defined as:
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where κ  is the gamma scale parameter. Importantly, the vari-
ance of a random variable following the gamma distribution is 
defined as a function of the mean (σ κ µ2 2 2= ), and the gamma 
model may thus better account for heteroscedastic exposure 
distributions.

Quantile Binning IPWs
Finally, we used a quantile binning approach to approxi-

mate f• (•) by ranking X  into j quantiles, and fitting a con-
ditional cumulative logistic model to estimate the predicted 
probability of being in a given quantile.21 Specifically, we esti-
mated the denominator value using a model defined as

log ,
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α α
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where αm is the probability of being in category m. Pre-
dicted probabilities for being in category m were calcu-
lated as expit expit{ } { }( )γ γ0 0 1m mC C+ − +−γγ γγ , where 
expit{ } / { exp( )}i i= + −1 1 . In our study, we ranked X  using 
j = 10 15 20, , and  quantiles. Therefore, the numerator for the 
weights (the marginal probability of falling into category j) is 
calculated as 1 j.

Following standard practice,10 we explored the impact 
of truncating the normal, normal heteroscedastic, and gamma 
weights at three levels: 1st and 99th, 5th and 95th, and 10th 
and 90th percentiles. In total, 26 weighting schemes were con-
sidered, based on six modeling approaches: a normal distribu-
tion (with no truncation and truncation at the 1st and 99th, 5th 
and 95th, and 10th and 90th percentiles), a t distribution (with 
1, 3, and 5 degrees of freedom), a gamma model (untruncated 
and truncated at previously specified percentiles), a normal 
model with heteroscedastic variance (untruncated and trun-
cated at previously specified percentiles), a truncated normal 
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model with heteroscedastic variance (untruncated and trun-
cated at previously specified percentiles), and a cumulative 
logistic model for discretized outcomes (based on 10, 15, 
and 20 categories). Because the heteroscedastic exposure was 
characterized by an excess of zero values, we modified the 
above density functions to include a zero-inflated portion.22

We assessed the performance of each method using bias 
(defined as the average of the difference between the point esti-
mate and the true value across Monte Carlo samples) and mean 
squared error (defined as squared bias plus the Monte Carlo vari-
ance of the estimate). Furthermore, we compare the distributions 
of the weights across all Monte Carlo samples. SAS version 9.3 
(SAS Institute, Cary, NC) was used for all analyses. In the eAp-
pendix (http://links.lww.com/EDE/A756), we provide SAS code 
illustrating how to construct inverse probability weights for a 
continuous exposure using all six approaches, as well as the SAS 
code used to conduct all simulations.

RESULTS
Table  1 shows descriptive statistics for the simulated 

data, including the four covariates sampled from the Québec 
birth file. These covariate statistic values can be used to rep-
licate our simulation study.23 Figure  1 shows histograms of 
the simulated exposures following a normal (panel A) and 
contaminated Poisson (panel B) distribution, with normal and 
nonparametric kernel density curves overlaid. In panel A, the 
kernel density curve and the normal density curve lay directly 
on top of one another. In panel B, the zero-inflated density por-
tion is clearly seen at the x-axis origin. Figure 2 shows scatter-
plots of the residuals obtained from two confounder-adjusted 
ordinary least squares regression models for each simulated 
exposure. As expected, Figure  2A shows no pattern in the 
residuals, confirming a homoscedastic exposure distribution. 
Figure 2B depicts a marked fan shape opening to the right, 
confirming a heteroscedastic exposure distribution. Moreover, 
the set of data points below the fan-shaped portion of the plot 
reveals the zero-inflated nature of the heteroscedastic expo-
sure points. Table 2 describes the inverse probability weights for all 

3000 Monte Carlo samples in our simulation study from each 
weighting scheme. With the exception of the weights from the 
heteroscedastic normal model for the heteroscedastic expo-
sure, the mean of the weights obtained from all methods and 
both exposures was close to one. The mean of the weights 
from the heteroscedastic normal model for the heteroscedastic 
exposure was 1.56 (minimum = 0 00. , maximum = ×1 2 106. ). 
These extreme values were due to the influence of fewer than 
1% of the data points in each Monte Carlo sample. Truncating 
the distribution of these heteroscedastic normal weights at the 
1st and 99th percentile resulted in weights with a mean of 1.00 
(minimum = 0 21. , maximum = 4.01). For the heteroscedastic 
exposure, over all 4.5 million observations, 288 data points 
had heteroscedastic normal weights greater than the 25% of 
the Monte Carlo sample size (1500 0 25 375× =. ). Of all other 
methods assessed, only the two-stage heteroscedastic normal 

TABLE 1.  Descriptive Statistics for the Simulation Data

Variable (Distribution) Mean Variance

Maternal age (normal) 29.84 21.60

Paternal age (normal) 32.52 30.45

Parity (Poisson)

 ��� 2 0.24 0.18

 ��� 3 0.07 0.07

 ��� 4 0.02 0.02

 ��� 5+ 0.02 0.02

X1 (normal) 16.98 2.47

X 2 (Poisson) 2.06 2.76

Y1 (Bernoulli) 0.08 0.07

Y2 (Bernoulli) 0.09 0.08

X1 (Homoscedastic)
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FIGURE 1. Histograms for both simulated exposures. A, nor-
mally distributed exposure (homoscedastic); B, contaminated 
Poisson exposure (heteroscedastic). Solid curve indicates nor-
mal density estimate; dashed curve, Kernel density estimate.

http://links.lww.com/EDE/A756
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approach yielded two observations (of all 4.5 million) with 
weights greater than 25% of the sample size, with values of 
1,306.98 and 1,838.08.

Figure 3 shows the bias of various IPW methods from 
two weighted regression models for both simulated scenarios. 
For the heteroscedastic normal weights, we present results 
from the single-stage approach with weights truncated at 
the 1st and 99th percentile of the distribution. The eFigure 
(http://links.lww.com/EDE/A756) reproduces Figure  3 with 
all assessed methods included. For the normally distributed 
homoscedastic exposure, the standard normal and the het-
eroscedastic normal approaches were unbiased. All other 
methods were slightly biased, with the gamma and quantile 
binning approaches least so, as indicated by means (denoted 
by ×) that were closest to zero. For the heteroscedastic expo-
sure, all methods were slightly biased, with the heteroscedastic 
normal (untruncated) and quantile binning approach (with 10, 
15, and 20 categories) least so: the magnitude of bias for these 
approaches was 0.022, 0.011, 0.013, and 0.012, respectively.

As expected, truncating the distribution of the weights 
at higher percentiles resulted in an increase in bias and a 
decrease in variance.10 However, a decrease in the overall mean 
squared error was not observed with increasing truncation. As 
observed in Table 3, truncating the normal weights beyond the 
1st and 99th percentile yielded no further decrease in mean 
squared error for either the homoscedastic or heteroscedastic 
exposures. The same was observed for the other heteroscedas-
tic normal weights and gamma distribution weights.

DISCUSSION
We compared six methods for constructing inverse 

probability weights for a continuous exposure with simu-
lated data generated from an empirical cohort. The first 
method assumed that the exposure followed a normal distri-
bution with constant variance. This approach has been used 
in prior research to estimate the effect of epoetin dose on 
hematocrit levels,24 and mortality in hemodialysis patients,25 
or the relation between loneliness and symptoms of depres-
sion.26 We found that when the exposure followed a normal 
distribution with constant variance, this method was unbi-
ased for the true exposure effect. When the exposure was 
heteroscedastic, using the homoscedastic normal approach 
resulted in a small bias.

We also used a heteroscedastic normal model to con-
struct weights for both exposures. We assessed the performance 
of several techniques to implement this approach. The first 
was a two-stage approach previously implemented to assess 
the relation between the proportion of residents in a given 
neighborhood living in poverty and individual alcohol use.13 
This approach can easily be implemented with two regression 

FIGURE 2.  Standardized residual plots from ordinary least 
squares regression models conditional on all confounders for 
both simulated exposures. A, Homoscedastic exposure; B, het-
eroscedastic exposure.

TABLE 2.  Distribution of Inverse Probability Weights for 
Both Simulated Exposures

Method

Homoscedastic Heteroscedastic

Mean (min, max) Mean (min, max)

Normal 1.00 (0.00, 131.70) 1.01 (0.34, 10.13)

Weight truncation

 ��� (1,99) 0.99 (0.24, 3.41) 1.00 (0.61, 2.22)

 ��� (5,95) 0.98 (0.49, 1.77) 1.00 (0.73, 1.50)

 ��� (10,90) 0.97 (0.61, 1.40) 1.00 (0.76, 1.30)

Heteroscedastic normal 1.00 (0.00, 64.94) 1.56 (0.00, 1.2 ×106)

t  Distribution

  Degrees of freedom

  ���  1 1.03 (0.14, 7.20) 1.01 (0.35, 3.26)

  ���  3 1.03 (0.07, 11.04) 1.01 (0.25, 3.82)

  ���  5 1.04 (0.04, 16.15) 1.01 (0.20, 4.14)

Gamma distribution 1.00 (0.00, 97.65) 0.99 (0.01, 41.20)

Quantile binning categories

 ��� 10 1.00 (0.11, 28.65) 1.00 (0.11, 16.41)

 ��� 15 1.00 (0.08, 30.29) 0.98 (0.08, 264.83)

 ��� 20 1.00 (0.06, 28.91) 0.95 (0.06, 74.58)

http://links.lww.com/EDE/A756
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models: one for the conditional mean of the exposure, and a 
second for the mean of the squared residuals from the first 
model. The second was a single-stage approach based on joint 
maximization of the likelihood for the mean and variance mod-
els. This approach can be easily implemented using standard 
software (eg, SAS procedure) and is equivalent to the two-stage 
approach when the variance is independent of the mean func-
tion.18 The third technique is based on constructing weights 
using a truncated normal distribution and joint maximization 
of the likelihood for the mean and variance models.27(§12.4) In 

our study, each of these methods yielded similar bias, and the 
major differences in mean squared error were due to very few 
influential observations with large weights.

Because the variance of a gamma random variable is 
defined as a function of the mean, the gamma distribution 
may, in principle, accommodate heteroscedasticity in the 
exposure. However, while the bias observed using the gamma 
distribution for the homoscedastic exposure was negligible, 
bias was more pronounced for the heteroscedastic distribu-
tion. One possible explanation lies in the fact that the gamma 
distribution approach requires a constant coefficient of varia-
tion (defined as the standard deviation of the exposure divided 
by the mean).28 (p 285) Indeed, further analyses revealed that the 
constant coefficient of variation assumption was met for the 
homoscedastic exposure but not for the heteroscedastic expo-
sure. Thus, while the gamma distribution may not be generally 
useful to account for heteroscedasticity, it may be useful when 
the constant coefficient of variation assumption is met.

In principle, constructing inverse probability weights 
using the t distribution should mitigate the impact of outliers 
on the variation in the weights.19,20(p 465)Still, we found little 
difference between the approach using the t distribution and 
the standard normal approach after truncating the weights. 
This may be due to the fact that our analyses focused on the 
performance of methods under homoscedastic and heterosce-
dastic exposures. Thus, while outliers were present in the 
heteroscedastic exposure, they may not have been dramatic 
enough to observe important differences with the t distribu-
tion. Second, when dealing with outliers, it is possible that the 
benefit gained from truncating the distribution of the weights 
obtained from a standard or heteroscedastic normal approach 
is equal to that gained from using the t distribution. Future 
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FIGURE 3.  Bias of IPW methods from two marginal structural 
models in two simulated scenarios. A, Homoscedastic expo-
sure; B, heteroscedastic exposure. N, standard normal distribu-
tion; N(1,99), truncated at 1st and 99th percentile; N(5,95), 
truncated at 5th and 95th percentile; N(10,90), truncated at 
10th and 90th percentile; NH, normal distribution with het-
eroscedasticity; t1, t distribution with 1df; t3, t distribution with 
3df; t5, t distribution with 5df; G, gamma distribution; QB10, 
quantile binning 10 categories; QB15, quantile binning 15 cat-
egories; QB20, quantile binning 20 categories; ×, mean value.

TABLE 3.  Mean Squared Error for Weighted Regression 
Model Parameters Obtained Using Different Inverse 
Probability–weighted Estimators for Two Simulated Exposures

Homoscedastic Heteroscedastic

Normal 0.0054 0.0049

Truncated

 ��� (1,99) 0.0048 0.0050

 ��� (5,95) 0.0051 0.0052

 ��� (10,90) 0.0058 0.0053

Heteroscedastic normal 0.0054 0.0434

t Distribution

  Degrees of freedom

  ���  1 0.0051 0.0047

  ���  3 0.0049 0.0047

  ���  5 0.0048 0.0047

Gamma distribution 0.0053 0.0033

Quantile binning categories

 ��� 10 0.0048 0.0032

 ��� 15 0.0048 0.0052

 ��� 20 0.0048 0.0036
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research could compare the performance of weight truncation, 
the t distribution, and other robust methods or mixture models 
that may better account for the presence of outliers.

Finally, quantile binning is a relatively simple approach 
that makes no assumptions about the distribution of the expo-
sure. This approach first ranks the exposure into quantiles. For 
zero-inflated exposures, one can also create a separate category 
for the zero portion and rank the continuous portion into quan-
tiles (in our study, both approaches yielded similar results). 
One then fits a multinomial or polytomous logistic regression 
model to these categories to obtain the predicted probabili-
ties of falling into the observed exposure category. We used 
a cumulative logistic regression model, which compares the 
probability of being above a certain threshold to the probabil-
ity of being below.29(p 301) We also used a baseline-category 
logistic regression model, which compares the probability 
of being in a certain category to being in a chosen referent 
category.29(p 293) Both methods yielded similar results.

Marginal structural models with a binary exposure are 
common in epidemiologic research. Westreich et al30 explored 
the finite-sample properties of marginal structural Cox pro-
portional hazards regression models with a binary exposure 
under various confounding scenarios and found their perfor-
mance followed expectations based on asymptotic theory. For 
a binary exposure, Lee et  al31,32 compared the performance 
of machine learning algorithms (including standard, pruned, 
bagged, and boosted classification and regression trees, and 
random forests) to standard logistic regression (with and with-
out truncating) to construct inverse probability weights in a 
simulation study. They found that boosted classification and 
regression trees were superior to other methods in a majority 
of the scenarios they explored. While continuous exposures 
are common in epidemiology, no studies have explored the 
performance of various methods to construct inverse probabil-
ity weights for a continuous exposure.

Continuous exposures follow a wide variety of paramet-
ric forms, including complex zero-inflated and other mixture 
distributions. Examples include asbestos exposure in occupa-
tional epidemiology,33 epoetin dose among elderly hemodi-
alysis patients,25 and occlusion therapy for the treatment of 
childhood amblyopia.34 To obtain an asymptotically unbiased 
and fully efficient inverse probability–weighted estimator 
with such exposures would require the use of complex mix-
ture models that are not readily fit using most standard soft-
ware packages. Moreover, the presence of heteroscedasticity 
would require accounting for the variance of the exposure as 
a function of relevant covariates. The absence of a relatively 
straightforward approach to construct inverse probability 
weights for complex, possibly heteroscedastic, exposure dis-
tributions may preclude the use of marginal structural models 
or lead to biased estimation in such settings. We show that a 
simple quantile binning approach provides relatively unbiased 
effect estimates with an acceptable mean squared error under 
various conditions compared with other methods.

It is important to note that, for the heteroscedastic expo-
sure, all methods were biased for the true causal effect. How-
ever, the magnitude of the observed bias is comparable to the 
known finite-sample bias that characterizes the Cox propor-
tional hazards regression model. Johnson et al35 found that the 
Cox partial likelihood estimator was biased up to 6% in finite 
samples. This is comparable with the maximum bias observe 
in our study (5.5% for the truncated normal approach with 
weights truncated at the 10th and 90th percentile, eFigure, 
http://links.lww.com/EDE/A756). For the quantile binning 
approach, the largest bias we observed was 1.3% for the het-
eroscedastic exposure with 15 categories.

Our estimand of interest is the marginal effect of a 
single-unit increase in the simulated exposures. To estimate 
this parameter, we stabilized the weights using only the mar-
ginal probability density (distribution) function of the expo-
sure. We could have achieved additional stability in the weights 
by conditioning the numerator on a selection of confounders, 
and then adjusting for these confounders in our regression 
model for the outcome. However, this would have changed 
our estimand to a covariate-conditional effect.36 For purposes 
of interpretation, unconfounded marginal effect estimates are 
arguably of greater public health relevance.37 Moreover, they 
may also be used to plot weighted dose-response functions that 
avoid complications that can arise in more standard practices.

Our simulation analyses were limited, in that we did not 
explore the performance of each method under a range of causal 
effects, confounding patterns, and sample sizes. Moreover, we 
restricted our attention to the time-fixed exposure setting. As 
with all simulation research, our results apply to the scenarios 
explored.38 We did, however, use empirical data sampled from the 
Québec birth file to generate our simulation data, and we assessed 
a wide range of approaches to construct inverse probability 
weights for a continuous exposure. We show how sensitive these 
estimates can be when the true exposure distribution is heterosce-
dastic, but when methods that assume homoscedasticity are used. 
We found that quantile binning is a simple way to obtain inverse 
probability weights for marginal structural models and performs 
well whether the exposure distribution is normal with constant 
variance or markedly nonnormal with nonconstant variance.

ACKNOWLEDGMENTS
We thank Richard MacLehose and two anonymous 

reviewers for helpful comments on previous versions of the 
manuscript. We thank Miguel Hernán for providing SAS code 
to fit the heteroscedastic truncated normal model.

REFERENCES
	 1.	 Sato T, Matsuyama Y. Marginal structural models as a tool for standard-

ization. Epidemiology. 2003;14:680–686.
	 2.	R obins JM. Structural nested failure time models. In: Andersen P, Keiding 

N, eds. The  Encyclopedia of Biostatistics. Chichester: John Wiley and 
Sons; 1998;4372–4389.

	 3.	 Platt RW, Schisterman EF, Cole SR. Time-modified confounding. Am J 
Epidemiol. 2009;170:687–694.

http://links.lww.com/EDE/A756


Epidemiology  •  Volume 25, Number 2, March 2014	 Inverse Probability Weights for Continuous Exposures

© 2014 Lippincott Williams & Wilkins	 www.epidem.com  |  299

	 4.	C hiba Y, Azuma K, Okumura J. Marginal structural models for estimating 
effect modification. Ann Epidemiol. 2009;19:298–303.

	 5.	 Vanderweele TJ, Vansteelandt S, Robins JM. Marginal structural models 
for sufficient cause interactions. Am J Epidemiol. 2010;171:506–514.

	 6.	T chetgen Tchetgen EJ, VanderWeele TJ. On causal inference in the pres-
ence of interference. Stat Methods Med Res. 2012;21:55–75.

	 7.	 VanderWeele TJ. Marginal structural models for direct and indi-
rect effects (erratum in Epidemiology 2009; 20(4):629). Epidemiol. 
2009;20:18–26.

	 8.	 Hernán MA, Brumback B, Robins JM. Marginal structural models to esti-
mate the causal effect of zidovudine on the survival of HIV-positive men. 
Epidemiol. 2000;11:561–570.

	 9.	R obins JM, Hernán MA, Brumback B. Marginal structural models and 
causal inference in epidemiology. Epidemiology. 2000;11:550–560.

	10.	Cole SR, Hernán MA. Constructing inverse probability weights for mar-
ginal structural models. Am J Epidemiol. 2008;168:656–664.

	11.	Robins JM. Marginal structural models versus structural nested models 
as tools for causal inference. In: Halloran M, Berry D, eds. Statistical 
Models in Epidemiology: The Environment and Clinical Trials. Vol. 16. 
New York, NY: Springer-Verlag; 1999;95–134.

	12.	Hernán MA, Robins JM. Estimating causal effects from epidemiological 
data. J Epidemiol Community Health. 2006;60:578–586.

	13.	Cerdá M, Diez-Roux AV, Tchetgen ET, Gordon-Larsen P, Kiefe C. The 
relationship between neighborhood poverty and alcohol use: estimation 
by marginal structural models. Epidemiology. 2010;21:482–489.

	14.	Metropolis N, Ulam S. The Monte Carlo method. J  Am Stat Assoc. 
1949;44:335–341.

	15.	Auger N, Abrahamowicz M, Park AL, Wynant W. Extreme mater-
nal education and preterm birth: time-to-event analysis of age and 
nativity-dependent risks. Ann Epidemiol. 2013;23:1–6.

	16.	Localio AR, Margolis DJ, Berlin JA. Relative risks and confidence inter-
vals were easily computed indirectly from multivariable logistic regres-
sion. J Clin Epidemiol. 2007;60:874–882.

	17.	Liang KYL, Zeger SL. Longitudinal data analysis using generalized lin-
ear models. Biometrika. 1986;73:13–22.

	18.	  Davidian M, Carroll RJ. Variance function estimation. J Am Stat Assoc. 
1987;82:1079–1091.

	19.	Lange KL, Little RJA, Taylor JMG. Robust statistical modeling using the 
t distribution. J Am Stat Assoc. 1989;84:881–896.

	20.	Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. Texts in 
Statistical Science. Boca Raton, Fla: Chapman & Hall/CRC; 2004.

	21.	McCullagh P. Regression models for ordinal data. J  R Stat Soc B. 
1980;42:109–142.

	22.	Lambert D. Zero-inflated Poisson regression, with an application to de-
fects in manufacturing. Technometrics. 1992;34:1–14.

	23.	Peng RD, Dominici F, Zeger SL. Reproducible epidemiologic research. 
Am J Epidemiol. 2006;163:783–789.

	24.	Cotter D, Zhang Y, Thamer M, Kaufman J, Hernán MA. The effect of epo-
etin dose on hematocrit. Kidney Int. 2008;73:347–353.

	25.	Zhang Y, Thamer M, Cotter D, Kaufman J, Hernán MA. Estimated effect 
of epoetin dosage on survival among elderly hemodialysis patients in the 
United States. Clin J Am Soc Nephrol. 2009;4:638–644.

	26.	VanderWeele TJ, Hawkley LC, Thisted RA, Cacioppo JT. A marginal 
structural model analysis for loneliness: implications for intervention tri-
als and clinical practice. J Consult Clin Psychol. 2011;79:225–235.

	27.	Hernán MA, Robins J. Causal Inference. Forthcoming. Chapman/Hall, 
Available at: http://www.hsph.harvard.edu/miguel-hernan/causal-infer-
ence-book/. Accessed 25 June 2013.

	28.	McCullagh P, Nelder JA. Generalized Linear Models. 2nd ed. London; 
New York: Chapman and Hall; 2000.

	29.	Agresti A. Categorical Data Analysis. Wiley Series in Probability and 
Statistics. 3rd ed. Hoboken, NJ: Wiley; 2013.

	30.	Westreich D, Cole SR, Schisterman EF, Platt RW. A simulation study of 
finite-sample properties of marginal structural Cox proportional hazards 
models. Stat Med. 2012;31:2098–2109.

	31.	Lee BK, Lessler J, Stuart EA. Improving propensity score weighting us-
ing machine learning. Stat Med. 2010;29:337–346.

	32.	Lee BK, Lessler J, Stuart EA. Weight trimming and propensity score 
weighting. PLoS One. 2011;6:e18174.

	33.	Naimi AI, Cole SR, Hudgens MG, Brookhart MA, Richardson DB. 
Assessing the component associations of the healthy worker survi-
vor bias: occupational asbestos exposure and lung cancer mortality. 
Ann Epidemiol. 2013;23:334–341.

	34.	Moodie EE, Stephens DA. Estimation of dose–response functions for 
longitudinal data using the generalised propensity score. Stat Methods in 
Med Res. 2012;21:149–166.

	35.	 Johnson ME, Tolley HD, Bryson MC, Goldman AS. Covariate analy-
sis of survival data: a small-sample study of Cox’s model. Biometrics. 
1982;38:685–698.

	36.	Kaufman JS. Marginalia: comparing adjusted effect measures. Epidemiol. 
2010;21:490–493.

	37.	Robins JM, Greenland S, Hu FC. Estimation of the causal effect of a 
time-varying exposure on the marginal mean of a repeated binary out-
come. J Am Stat Assoc. 1999;94:687–700.

	38.	Maldonado G, Greenland S. The importance of critically interpreting 
simulation studies. Epidemiol. 1997;8:453–456.

http://��http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://��http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


*IN THIS CODE, X = EXPOSURE, {C1-C3} ARE CONFOUNDERS; 
*NORMAL, CONSTANT VARIANCE; 
proc genmod data=a; 
   model x = c1 c2 c3 / maxiter=100; 
   *variance of x is sse/df = valuedf; 
   ods output Modelfit=ss(where=(criterion="Deviance")); 
   output out=x xbeta=xb;*predicted mean is xb; 
data ss;set ss;merg=1; 
data x;set x;merg=1; 
data a1; 
   merge x ss; 
   by merg; 
   sd_x=sqrt(valuedf);*standard deviation; 
   pdf_den = pdf("normal",x,xb,sd_x);*denominator density value; 
   drop criterion df value valuedf; 
run; 
*t, CONSTANT VARIANCE; 
proc genmod data=a; 
   model  x = c1 c2 c3 / maxiter=100; 
   output out=x stdresdev=e; 
data a1; 
   set x; 
   pdf_den = pdf("t",e,1);*denominator density value with 1 df; 
run; 
*NORMAL, HETEROSCEDASTIC VARIANCE, TRUNCATED NORMAL, HETEROSCEDASTIC VARIANCE; 
*QLIM CODE PROVIDED BY DR MIGUEL HERNAN; 
proc qlim data=a; 
   *TO FIT TRUNCATED NORMAL, UNCOMMENT BELOW; 
    model x =  c1 c2 c3 ;* / truncated(lb=5 ub=30) ; 
    hetero x ~  c1 c2 c3  / link = exp noconst; 
    nloptions  tech=newrap maxiter=1000 maxfunc = 2000; 
    output out=x predicted  errstd; 
data a1; 
   set x; 
   pdf_den = pdf("normal",x,p_x,errstd_x); 
   *above gives normal heteroscedastic; 
   p_n = pdf("normal",x,p_x,errstd_x) ; 
   p_lb = cdf("normal",5,p_x,errstd_x); 
   p_ub = cdf("normal",30,p_x,errstd_x); 
   pdf_den_trunc = p_n / (p_lb - p_ub); 
   *above gives truncated normal heteroscedastic; 
run; 
*GAMMA; 
proc genmod data=a; 
   model  x = c1 c2 c3 / dist=gamma link=log maxiter=100; 
   ods output ParameterEstimates=s(where=(Parameter="Scale")); 
   output out=x p=xb; 
data s;set s;merg=1;rename estimate=scale; 
drop parameter df stderr lowerwaldcl upperwaldcl chisq probchisq; 
data x; set x;merg=1; 
data a1; 
   merge x s; 
   by merg; 
   *determine Gamma shape parameter; 
   lambda = xb/scale; 
   *estimate denominator density; 
   pdf_den = pdf("gamma",x,scale,lambda); 
run; 
*to obtain numerator density values for all of the above,  
fit models without c1, c2, or c3 and repeat data step a1; 
*QUANTILE BINNING; 
proc rank data=a out=x ties=low groups=10; 
var x;ranks x_r; 



proc logistic data=x desc; 
    model x_r = c1 c2 c3 / maxiter=100; 
   output out=a1 predprobs=i; 
run;quit;run; 
data a1; 
   set a1;  
   array ii(*) ip_1-ip_10; 
   *ip_1-ip_10 are predicted probabilities of being in category 1 to 10; 
   do j=1 to 10; 
      *set density to predicted probability of observed exposure category; 
      if x_r = j then pdf_den=ii(j); 
   end; 
   drop j ip_1-ip_10;  
run;quit;run; 
*set numerator density value to 1/j; 
*END; 
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******************************************************************************; 
"CONSTRUCTING INVERSE PROBABILITY WEIGHTS FOR A CONTINUOUS EXPOUSRE" 
**AUTHOR: ASHLEY ISAAC NAIMI (ashley.naimi@mcgill.ca) 
**VERSION: 3.3  
**PURPOSE: GENERATE SIMULATED DATA AND ASSESS DIFFERENT METHODS TO CONSTRUCT IPW 
******************************************************************************; 
%inc "c:\ain\header.txt"; 
%inc "c:\ain\spline.txt"; 
proc printto log="Y:\Documents\Research\Papers\ConstructingWeights\20Jun13\ipw.sim2.log";run; 
proc printto 
print="Y:\Documents\Research\Papers\ConstructingWeights\20Jun13\ipw.sim2.lst";run; 
*IMPORT QUEBEC BIRTH FILE DATA TO GENERATE SIMULATED DATA. KEEP ONLY MATERNAL AND PATERNAL 
AGE AND PARITY; 
proc import datafile="Y:\Documents\Research\Papers\ConstructingWeights\20Jun13\ipimoms.txt" 
     out=moms 
     dbms=dlm 
     replace; 
     delimiter='09'x; 
run; 
data moms;set moms;id = _N_;keep mage page parity id;run; 
*SELECT 3000 IID RANDOM SAMPLES OF QUEBEC BIRTH FILE DATA TO GENERATE SIMULATED EXPOSURE AND 
OUTCOME DATA; 
proc surveyselect data=moms  
      out=a noprint  
      method=srs  
      reps=50 
      seed=675847  
      sampsize=1500; 
run; 
proc print data=a (obs=5);run; 
*CREATE DISJOINT INDICATOR VARIALBES FOR PARITY; 
data a; 
 set a; 
 array par(*) parity1-parity5; 
 do pp = 1 to 5; 
  par(pp) = (parity=pp); 
 end; 
run; 
*GENERATE TWO SIMULATED EXPOSURES (x2a and x2c) AND OUTCOMES AS A FUNCTION OF QUEBEC BIRTH 
FILE DATA COVARIATES; 
data a; 
 set a; 
 call streaminit(789654); 
   r = rand("bernoulli",.5); 
   mu = .025*mage + .0025*page + .00125*mage*page 
     - .21*parity2 - .22*parity3 - .45*parity4 - .45*parity5; 
   x2a = rand("normal",15 + mu, 1.5);*r + exp(.95*rannor(987))*(1-r);*exp(mu 
+ rand("normal",0,.25));*CONTAMINATED-NORMAL DISTRIBUTION: HOMOSCEDASTIC; 
   if x2a < 0 then x2a = 0; 
   jitter = rand("normal"); 
   x2c = (rand("Poisson",mu) + jitter);*POISSON DISTRIBUTION: 
HETEROSCEDASTIC WITH MEAN = VARIANCE; 
   if x2c < 0 then x2c = 0; 
   p2a = 1/(1+exp(-(-11.5 + log(1.25)*x2a + log(1.7)*sqrt(mage) + 
log(1.5)*sqrt(page) 
               + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5))); 
   y2a = rand("bernoulli",p2a); 
   p2c = 1/(1+exp(-(-8.05 + log(1.25)*x2c + log(1.7)*sqrt(mage) + 
log(1.5)*sqrt(page) 
               + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5))); 
   y2c = rand("bernoulli",p2c); 



   smage = sqrt(mage); 
   spage = sqrt(page); 
   logx2a = x2a; 
   llx2a = log(x2a); 
   logx2c = log(x2c+.001); 
   x2cind = (x2c>0); 
   pind = sum(of parity2-parity5); 
   cens=1; 
   magepage = mage*page; 
rename replicate=h ; 
label replicate = ' ' ; 
run; 
proc means data=a min max mean median q1 q3 var nmiss maxdec=3; 
var x2a x2c logx2c y2a y2c mage page parity2-parity5;run; 
*DETERMINE MARGINAL TRUE VALUE USING METHOD OF MARGINAL STANDARDIZATION: Localio AR, ET AL. 
Journal of Clinical Epidemiology. 2007; 
data check; 
 set a; 
 linear2anum = -11.5 + log(1.25)*17.984 + log(1.7)*sqrt(mage) + log(1.5)*sqrt(page) + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5; 
 p2anum = 1/(1+exp(-(linear2anum))); 
 linear2aden = -11.5 + log(1.25)*16.984 + log(1.7)*sqrt(mage) + log(1.5)*sqrt(page) + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5; 
 p2aden = 1/(1+exp(-(linear2aden))); 
 
 linear2cnum = -8.05 + log(1.25)*2.067 + log(1.7)*sqrt(mage) + log(1.5)*sqrt(page) + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5; 
 p2cnum = 1/(1+exp(-(linear2cnum))); 
 linear2cden = -8.05 + log(1.25)*1.067 + log(1.7)*sqrt(mage) + log(1.5)*sqrt(page) + 
log(0.75)*parity2 + log(0.8)*parity3 + log(0.85)*parity4 + log(0.9)*parity5; 
 p2cden = 1/(1+exp(-(linear2cden))); 
run; 
proc means data=check noprint mean; 
var p2anum p2aden; 
var p2cnum p2cden; 
output out=meancheck mean=p2anum p2aden p2cnum p2cden; 
data meancheck;set meancheck; 
truex2a = log((p2anum/(1-p2anum))/(p2aden/(1-p2aden)));truex2c = log((p2cnum/(1-
p2cnum))/(p2cden/(1-p2cden))); 
merg = 1; 
keep merg truex2a truex2c; 
run; 
 
*CONSTRUCTING IPWS; 
*MODEL MARGINAL AND CONDITIONAL MEAN OF EXPOSURE TO CONSTRUCT IPW; 
 
*FOR X2C MODEL ZERO-INFLATED PORTION; 
ods select none; 
proc logistic data=a; 
 by h; 
 title "Continuous Exposure Model: Numerator Zero Portion"; 
 model x2cind = / maxiter=100; 
 output out=nx2cbin p=nx2cbin; 
proc logistic data=a; 
 by h; 
 title "Continuous Exposure Model: Denominator Binary Portion"; 
 model x2cind = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=dx2cbin p=dx2cbin; 
 
*NORMAL MODEL; 
proc genmod data=a; 
 by h; 
 title "Continuous Exposure Model: Numerator"; 



 model logx2a = / maxiter=100; 
 ods output Modelfit=ssnx2a(where=(criterion="Deviance")); 
 output out=nx2aa xbeta=nxba stdresdev=nx2a;run; 
data nx2a; 
 merge nx2aa ssnx2a; 
 by h; 
 varnx2a=sqrt(valuedf); 
 drop criterion df value valuedf; 
run; 
proc genmod data=a; 
 by h;*where x2c>0; 
 title "Continuous Exposure Model: Numerator"; 
 model logx2c = / maxiter=100; 
 ods output Modelfit=ssnx2c(where=(criterion="Deviance")); 
 output out=nx2cc xbeta=nxbc stdreschi=nx2c; 
data nx2c; 
 merge nx2cc ssnx2c; 
 by h; 
 varnx2c=sqrt(valuedf); 
 drop criterion df value valuedf; 
run; 
proc genmod data=a; 
 by h; 
 title "Continuous Exposure Model: Denominator"; 
 model x2a = mage page mage*page parity2-parity5 / maxiter=100; 
 ods output Modelfit=ssdx2a(where=(criterion="Deviance")); 
 output out=dx2aa xbeta=dxba stdresdev=dx2a; 
data dx2a; 
 merge dx2aa ssdx2a; 
 by h; 
 vardx2a=sqrt(valuedf); 
 drop criterion df value valuedf; 
run; 
proc genmod data=a; 
 by h;*where x2c>0; 
 title "Continuous Exposure Model: Denominator"; 
 model logx2c = mage page mage*page parity2-parity5 /  maxiter=100; 
 ods output Modelfit=ssdx2c(where = (criterion = "Deviance")); 
 output out=dx2cc xbeta=dxbc stdreschi=dx2c;run;  
data dx2c; 
 merge dx2cc ssnx2c; 
 by h; 
 vardx2c=sqrt(valuedf); 
 drop criterion df value valuedf; 
run; 
ods select all; 
proc plot data=dx2a; 
title "Residual Plot A"; 
plot dx2a*dxba ; 
proc plot data=dx2c; 
title "Residual Plot C"; 
plot dx2c*dxbc ; 
run;quit;run; 
 
*NORMAL MODELS ACCOUNTING FOR HETEROSCEDASTICITY; 
*METHOD IMPLEMENTED BY CERDA ET AL AS CITED IN MAIN TEXT; 
ods select none; 
proc reg data=a;by h; 
 model x2a = mage page magepage parity2 parity3 parity4 parity5; 
 output out=resid r=rr; 
data resid; 
 set resid; 
 r2 = rr**2; 



proc genmod data=resid;by h; 
 model r2 = mage pind / dist=normal link=log noint; 
 output out=x2avar p=x2avar; 
proc reg data=a;by h; 
 model logx2c = mage page magepage parity2 parity3 parity4 parity5; 
 output out=resid r=rr; 
data resid; 
 set resid; 
 r2 = rr**2; 
proc genmod data=resid;by h; 
 model r2 = mage pind / dist=normal link=log noint; 
 output out=x2cvar p=x2cvar;*variance; 
run;quit;run; 
 
*METHOD IMPLEMENTED BY HERNAN AND ROBINS CAUSAL INFERENCE BOOK, CHAPTER 12 SECTION 4 
(TRUNCATED NORMAL WITH HETEROSCEDASTIC VARIANCE); 
proc qlim data=a ; 
 by h;  
    model x2a =   / truncated(lb=5  ub=30); 
    hetero x2a ~    / link = exp noconst; 
    nloptions  tech=newrap maxiter=1000 maxfunc = 2000; 
    output out = numx2a_th predicted  errstd ; 
data numx2a_th;set numx2a_th;rename p_x2a=Pn_x2a errstd_x2a=Errstdn_x2a;run; 
proc qlim data=a ; 
 by h;  
    model x2a =  mage page magepage parity2 parity3 parity4 parity5 / truncated(lb=5  ub=30); 
    hetero x2a ~  mage pind  / link = exp noconst; 
    nloptions  tech=newrap maxiter=1000 maxfunc = 2000; 
    output out = denx2a_th predicted  errstd ; 
data denx2a_th;set denx2a_th;rename p_x2a=Pd_x2a errstd_x2a=Errstdd_x2a; 
proc qlim data=a ; 
 by h;  
    model logx2c =   / truncated(lb=-7.5 ub=3.5); 
    hetero logx2c ~    / link = exp noconst; 
    nloptions  tech=newrap maxiter=1000 maxfunc = 2000; 
    output out = numx2c_th predicted  errstd ; 
data numx2c_th;set numx2c_th;rename p_logx2c=Pn_x2c errstd_logx2c=Errstdn_x2c;run; 
proc qlim data=a ; 
 by h;  
    model logx2c =  mage page magepage parity2 parity3 parity4 parity5 / truncated(lb=-7.5 
ub=3.5); 
    hetero logx2c ~  mage pind  / link = exp noconst; 
    nloptions tech=newrap maxiter=1000 maxfunc = 2000; 
    output out = denx2c_th predicted  errstd ; 
data denx2c_th;set denx2c_th;rename p_logx2c=Pd_x2c errstd_logx2c=Errstdd_x2c; 
run;quit;run; 
 
*USER WRITTEN CODE FOR HETERO NORMAL; 
proc nlmixed data=a tech=NRRIDG maxiter=1000 maxfunc=2000; 
 title "Numerator Model"; 
 by h; 
 parms b0=0 sd0=1; 
 bounds sd0 > 0; 
 *MEAN; 
 mu = b0; 
 *CONSTANT VARIANCE; 
 sigma_sq = sd0; 
 sigma = sqrt(sigma_sq); 
 model x2a ~ normal(mu,sigma_sq); 
 predict mu  out=bbnx2amu; 
 predict sigma out=bbnx2asig; 
proc nlmixed data=a tech=NRRIDG maxiter=1000 maxfunc=2000; 
 title "Denominator Model"; 



 by h; 
 parms b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 sigma_sq=1 sd1=1 sd2=1; 
 bounds sigma_sq > 0, sd1>0, sd2>0; 
 *MEAN; 
 mu = b0 + b1*mage + b2*page + b3*mage*page + b4*parity2 + b5*parity3 + b6*parity4 + 
b7*parity5; 
 *HETEROSCEDASTIC VARIANCE FUNCTION; 
 *See, e.g., Davidian and Carroll (1987) JASA Col 82 Issue 400 for justification of 
equation; 
 sigma_i_sq = log(sigma_sq) + sd1*mage + sd2*pind; 
 sigma_i = sqrt(sigma_i_sq); 
 model x2a ~ normal(mu,sigma_i_sq); 
 predict mu  out=bbdx2amu; 
 predict sigma_i out=bbdx2asig; 
run;quit;run; 
data bbnx2amu;set bbnx2amu;rename pred=nx2amu;run; 
data bbnx2asig;set bbnx2asig;rename pred=nx2asig;run; 
data bbdx2amu;set bbdx2amu;rename pred=dx2amu;run; 
data bbdx2asig;set bbdx2asig;rename pred=dx2asig;run; 
proc nlmixed data=a tech=nrridg maxiter=1000 maxfunc=2000; 
 by h; 
 parms b0=0 g0=0 sd0=1; 
 bounds sd0 > 0; 
 *CONTINUOUS MEAN PORTION; 
 mu = b0; 
 *ZERO INFLATED MEAN PORTION; 
 pi = 1/(1+exp(-(g0))); 
 *CONSTANT VARIANCE; 
 sigma_sq = sd0; 
 sigma = sqrt(sigma_sq); 
 ll = (x2c=0)*(log(pi)) + (x2c>0)*((log(1-pi))+log(pdf('normal',logx2c,mu,sigma))); 
 model logx2c ~ general(ll); 
 predict mu  out=bbnx2cmu; 
 predict pi out=bbnx2cpi; 
 predict sigma out=bbnx2csig;run; 
proc nlmixed data=a tech=nrridg maxiter=1000 maxfunc=2000; 
 by h; 
 parms b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0  
    g0=0 g1=0  g2=0  
    sigma_sq=1 sd1=0 sd2=0; 
 bounds sigma_sq > 0; 
 *CONTINUOUS MEAN PORTION; 
 mu = b0 + b1*mage + b2*page + b3*mage*page + b4*parity2 + b5*parity3 + b6*parity4 + 
b7*parity5; 
 *ZERO INFLATED MEAN PORTION; 
 pi = 1/(1+exp(-(g0 + g1*mage + g2*pind))); 
 *HETEROSCEDASTIC VARIANCE; 
 log_sigma_i_sq = log(sigma_sq) + sd1*mage + sd2*pind; 
 sigma_i = sqrt(exp(log_sigma_i_sq)); 
 ll = (x2c=0)*log(pi) + (x2c>0)*((log(1-pi))+log(pdf('normal',logx2c,mu,sigma_i))); 
 model logx2c ~ general(ll); 
 predict mu  out=bbdx2cmu; 
 predict pi out=bbdx2cpi; 
 predict sigma_i out=bbdx2csig; 
run;quit;run; 
data bbnx2cmu;set bbnx2cmu;rename pred=nx2cmu;keep h id pred;run; 
data bbnx2cpi;set bbnx2cpi;rename pred=nx2cpi;keep h id pred;run; 
data bbnx2csig;set bbnx2csig;rename pred=nx2csig;keep h id pred;run; 
data bbdx2cmu;set bbdx2cmu;rename pred=dx2cmu;keep h id pred;run; 
data bbdx2cpi;set bbdx2cpi;rename pred=dx2cpi;keep h id pred;run; 
data bbdx2csig;set bbdx2csig;rename pred=dx2csig;keep h id pred;run; 
 
*GAMMA MODEL; 



proc genmod data=a ; 
 by h; 
 title "Continuous Exposure Model: Numerator"; 
 model x2a = / link=log dist=gamma maxiter=100; 
 ods output ParameterEstimates=ngx2aa1(where=(Parameter="Scale")); 
 output out=ngx2aa2 p=ngx2a;run; 
data ngx2a; 
 merge ngx2aa1 ngx2aa2; 
 by h; 
 ngx2ascale = estimate; 
 drop parameter df stderr lowerwaldcl upperwaldcl chisq probchisq; 
 
proc genmod data=a ; 
 where x2c > 0; 
 by h; 
 title "Continuous Exposure Model: Numerator Continuous Portion"; 
 model x2c = / link=log dist=gamma maxiter=100; 
 ods output ParameterEstimates=ngx2cc1(where=(Parameter="Scale")); 
 output out=ngx2cc2 p=ngx2c; 
data ngx2c; 
 merge ngx2cc1 ngx2cc2; 
 by h; 
 ngx2cscale = estimate; 
 drop parameter df stderr lowerwaldcl upperwaldcl chisq probchisq; 
proc genmod data=a ; 
 by h; 
 title "Continuous Exposure Model: Denominator"; 
 model x2a = mage page mage*page parity2-parity5 / link=log dist=gamma maxiter=100; 
 ods output ParameterEstimates=dgx2aa1(where=(Parameter="Scale")); 
 output out=dgx2aa2 p=dgx2a; 
data dgx2a; 
 merge dgx2aa1 dgx2aa2; 
 by h; 
 dgx2ascale = estimate; 
 drop parameter df stderr lowerwaldcl upperwaldcl chisq probchisq; 
 
proc genmod data=a ; 
 where x2c > 0; 
 by h; 
 title "Continuous Exposure Model: Denominator Continuous Portion"; 
 model x2c = mage page mage*page parity2-parity5 / link=log dist=gamma maxiter=100; 
 ods output ParameterEstimates=dgx2cc1(where=(Parameter="Scale")); 
 output out=dgx2cc2 p=dgx2c;run; 
data dgx2c; 
 merge dgx2cc1 dgx2cc2; 
 by h; 
 dgx2cscale = estimate; 
 drop parameter df stderr lowerwaldcl upperwaldcl chisq probchisq; 
run;quit;run; 
 
*CHECK IF CV IS CONSTANT ACROSS MU (GAMMA ASSUMPTION); 
data dx2a; 
 set dx2a; 
 rr = dx2a**2; 
proc genmod data=dx2a; 
model rr = dxba / link=log dist=normal; 
output out=cv p=sigma; 
run;quit;run; 
data cv; 
 set cv; 
 sd = sigma**(1/2); 
 cv = sd/dxba; 
ods select all; 



proc plot data=cv; 
plot cv*dxba; 
run;quit;run; 
ods select none; 
proc reg data=cv; 
model cv = dxba; 
run;quit;run; 
 
proc genmod data=a; 
 where x2c>0; 
 model x2c = mage page mage*page parity2-parity5 /  maxiter=100; 
 output out=cv xbeta=dxbc stdreschi=dx2c;run;  
data cv; 
 set cv; 
 rr = dx2c**2; 
proc genmod data=cv; 
where x2c>0; 
model rr = dxbc / link=log dist=normal; 
output out=cv p=sigma; 
run;quit;run; 
data cv; 
 set cv; 
 sd = sigma**(1/2); 
 cv = sd/(dxbc); 
run; 
ods select all; 
proc plot data=cv; 
plot cv*dxbc; 
run;quit;run; 
proc reg data=cv; 
model cv = dxbc; 
run;quit;run; 
 
*QUANTILE BINNING APPROACH; 
*RANK CONTINUOUS EXPOSURES INTO CATEGORIES; 
proc rank data=a out=cc(keep= h id x2a x2c x2arank10 x2crank10) ties=low groups=10; 
by h;var x2a x2c;ranks x2arank10 x2crank10;run; 
proc rank data=cc out=cc ties=low groups=15; 
by h;var x2a x2c;ranks x2arank15 x2crank15;run; 
proc rank data=cc out=cc ties=low groups=20; 
by h;var x2a x2c;ranks x2arank20 x2crank20;run; 
proc sort data=a;by h id; 
proc sort data=cc;by h id; 
data bb;merge a cc;by h id; 
data bb;set bb; 
array catrank(6) x2arank10 x2crank10 x2arank15 x2crank15 x2arank20 x2crank20; 
do jj = 1 to 6; 
 catrank(jj) = catrank(jj)+1; 
end; 
run; 
*FIT CUMULATIVE LOGISTIC MODELS TO RANKED EXPOSURE VALUES; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 10"; 
 model x2arank10 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa1 predprobs=i; 
run;quit;run; 
data dcatx2a10; 
 set aa1;  
 array ii(*) ip_1-ip_10; 
 do kappa=1 to 10; 
  if x2arank10 = kappa then dencata10=ii(kappa); 
 end; 



 drop kappa ip_1-ip_10;  
run; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 10"; 
 model x2crank10 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa3 predprobs=i; 
run;quit;run; 
data dcatx2c10; 
 set aa3;  
 array ii(*) ip_1-ip_10; 
 do kappa=1 to 10; 
  if x2crank10 = kappa then dencatc10=ii(kappa); 
 end; 
 drop kappa ip_1-ip_10;  
run; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 15"; 
 model x2arank15 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa1 predprobs=i; 
run;quit;run; 
data dcatx2a15; 
 set aa1;  
 array ii(*) ip_1-ip_15; 
 do kappa=1 to 15; 
  if x2arank15 = kappa then dencata15=ii(kappa); 
 end; 
 drop kappa ip_1-ip_15;  
run; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 15"; 
 model x2crank15 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa3 predprobs=i; 
run;quit;run; 
data dcatx2c15; 
 set aa3;  
 array ii(*) ip_1-ip_15; 
 do kappa=1 to 15; 
  if x2crank15 = kappa then dencatc15=ii(kappa); 
 end; 
 drop kappa ip_1-ip_15;  
run; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 20"; 
 model x2arank20 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa1 predprobs=i; 
run;quit;run; 
data dcatx2a20; 
 set aa1;  
 array ii(*) ip_1-ip_20; 
 do kappa=1 to 20; 
  if x2arank20 = kappa then dencata20=ii(kappa); 
 end; 
 drop kappa ip_1-ip_20;  
run; 
proc logistic data=bb desc noprint; 
 by h; 
 title "Categorical Exposure Model: Denominator 20"; 
 model x2crank20 = mage page mage*page parity2-parity5 / maxiter=100; 
 output out=aa3 predprobs=i; 



run;quit;run; 
data dcatx2c20; 
 set aa3;  
 array ii(*) ip_1-ip_20; 
 do kappa=1 to 20; 
  if x2crank20 = kappa then dencatc20=ii(kappa); 
 end; 
 drop kappa ip_1-ip_20;  
run; 
*CREATE STABILIZED IPWs; 
data b; 
 merge a nx2cbin dx2cbin nx2a nx2c dx2a dx2c ngx2a ngx2c dgx2a dgx2c x2avar x2cvar  
    numx2a_th denx2a_th numx2c_th denx2c_th dcatx2a10 dcatx2a15 dcatx2a20 
dcatx2c10 dcatx2c15 dcatx2c20 
    bbnx2amu bbnx2asig bbdx2amu bbdx2asig 
    bbnx2cmu bbnx2cpi bbnx2csig bbdx2cmu bbdx2cpi bbdx2csig; 
 by h id; 
  
 *NORMAL; 
 *x2a; 
 numx2a=pdf("normal",x2a,nxba,varnx2a); 
 denx2a=pdf("normal",x2a,dxba,vardx2a); 
  
 *x2c; 
 *ZERO INFLATED PORTION; 
 if x2cind = 0 then do; 
  numx2c=nx2cbin + (1-nx2cbin)*pdf("normal",0,nxbc,varnx2c); 
  denx2c=dx2cbin + (1-dx2cbin)*pdf("normal",0,dxbc,vardx2c); 
 end; 
 *CONTINUOUS PORTION; 
 if x2cind = 1 then do; 
  numx2c=(1-nx2cbin)*pdf("normal",logx2c,nxbc,varnx2c); 
  denx2c=(1-dx2cbin)*pdf("normal",logx2c,dxbc,vardx2c); 
 end; 
 
 *GAMMA; 
 *x2a; 
 *DETERMINE GAMMA SHAPE PARAMETER  (LAMBDA); 
 ngx2alambda = ngx2a/ngx2ascale; 
 dgx2alambda = dgx2a/dgx2ascale; 
 
 numgx2a = pdf("gamma",x2a,ngx2ascale,ngx2alambda); 
 dengx2a = pdf("gamma",x2a,dgx2ascale,dgx2alambda); 
 
 *x2c; 
 *DETERMINE GAMMA SHAPE PARAMETER (LAMBDA); 
 *ZERO INFLATED PORTION; 
 if x2cind = 0 then do;  
  numgx2c = nx2cbin;*b/c gamma pdf defined as zero when x2c = 0, no continuous 
portion; 
  dengx2c = dx2cbin; 
 end; 
 *CONTINUOUS PORTION; 
 if x2cind = 1 then do; 
  ngx2clambda = ngx2c/ngx2cscale; 
  dgx2clambda = dgx2c/dgx2cscale; 
  numgx2c = (1-nx2cbin)*pdf("gamma",x2c,ngx2cscale,ngx2clambda); 
  dengx2c = (1-dx2cbin)*pdf("gamma",x2c,dgx2cscale,dgx2clambda); 
 end; 
 
 *NORMAL HETEROSCEDASTIC: USING CERDA ET AL'S METHOD; 
 *x2a; 
 numx2ah=pdf("normal",x2a,nxba,varnx2a); 



 denx2ah=pdf("normal",x2a,dxba,sqrt(x2avar)); 
  
 *x2c; 
 *ZERO INFLATED PORTION; 
 if x2cind = 0 then do; 
  numx2ch=nx2cbin;* + (1-nx2cbin)*pdf("normal",0,nxbc,varnx2c); 
  denx2ch=dx2cbin;* + (1-dx2cbin)*pdf("normal",0,dxbc,x2cvar); 
 end; 
 *CONTINUOUS PORTION; 
 if x2cind = 1 then do; 
  numx2ch=(1-nx2cbin)*pdf("normal",logx2c,nxbc,varnx2c); 
  denx2ch=(1-dx2cbin)*pdf("normal",logx2c,dxbc,sqrt(x2cvar)); 
 end; 
 
 *NORMAL HETEROSCEDASTIC: USING HERNAN & ROBINS' METHOD; 
 *x2a; 
 nx2a_th = pdf("normal",x2a,Pn_x2a,Errstdn_x2a); 
 ubnx2a_th = cdf("normal",30, Pn_x2a, Errstdn_x2a); 
 lbnx2a_th = cdf("normal",5, Pn_x2a, Errstdn_x2a) ; 
 
 numx2a_th = nx2a_th / (ubnx2a_th - lbnx2a_th); 
 
 dx2a_th = pdf("normal",x2a,Pd_x2a,Errstdd_x2a); 
 ubdx2a_th = cdf("normal",30, Pd_x2a, Errstdd_x2a); 
 lbdx2a_th = cdf("normal",5, Pd_x2a, Errstdd_x2a) ; 
 
 denx2a_th = dx2a_th / (ubdx2a_th - lbdx2a_th); 
  
 *x2c; 
 *ZERO INFLATED PORTION; 
 if x2cind = 0 then do; 
  numx2c_th=nx2cbin + (1-
nx2cbin)*(pdf("normal",logx2c,pn_x2c,errstdn_x2c)/(cdf("normal",3.5,pd_x2c,errstdd_x2c)-
cdf("normal",-7.5,pn_x2c,errstdn_x2c))); 
  denx2c_th=dx2cbin + (1-
dx2cbin)*(pdf("normal",logx2c,pd_x2c,errstdd_x2c)/(cdf("normal",3.5,pd_x2c,errstdd_x2c)-
cdf("normal",-7.5,pd_x2c,errstdd_x2c))); 
 end; 
 *CONTINUOUS PORTION; 
 if x2cind = 1 then do; 
  numx2c_th=(1-
nx2cbin)*(pdf("normal",logx2c,pn_x2c,errstdn_x2c)/(cdf("normal",3.5,pd_x2c,errstdd_x2c)-
cdf("normal",-7.5,pn_x2c,errstdn_x2c))); 
  denx2c_th=(1-
dx2cbin)*(pdf("normal",logx2c,pd_x2c,errstdd_x2c)/(cdf("normal",3.5,pd_x2c,errstdd_x2c)-
cdf("normal",-7.5,pd_x2c,errstdd_x2c))); 
 end; 
 
 *NORMAL HETEROSCEDASTIC: USER WRITTEN; 
 *x2a; 
 numx2ahu=pdf("normal",x2a,nx2amu,nx2asig); 
 denx2ahu=pdf("normal",x2a,dx2amu,dx2asig); 
 
 *x2c; 
 *ZERO PORTION; 
 if x2c = 0 then do;  
  numx2chu = nx2cpi; 
  denx2chu = dx2cpi; 
 end; 
 *CONTINUOUS PORTION; 
 if x2c > 0 then do; 
  numx2chu = (1-nx2cpi)*pdf("normal",logx2c,nx2cmu,nx2csig); 
  denx2chu = (1-dx2cpi)*pdf("normal",logx2c,dx2cmu,dx2csig); 



 end; 
 
 *T DISTRIBUTED; 
 numt1x2a = pdf("T",nx2a,1); 
 numt1x2c = pdf("T",nx2c,1); 
 dent1x2a = pdf("T",dx2a,1); 
 dent1x2c = pdf("T",dx2c,1); 
 
 numt3x2a = pdf("T",nx2a,3); 
 numt3x2c = pdf("T",nx2c,3); 
 dent3x2a = pdf("T",dx2a,3); 
 dent3x2c = pdf("T",dx2c,3); 
 
 numt5x2a = pdf("T",nx2a,5); 
 numt5x2c = pdf("T",nx2c,5); 
 dent5x2a = pdf("T",dx2a,5); 
 dent5x2c = pdf("T",dx2c,5); 
 
 *STABILIZED WEIGHTS; 
 *NORMAL; 
 swx2a=numx2a/denx2a; 
 swx2c=numx2c/denx2c; 
  
 *HETEROSCEDASTIC NORMAL; 
 swx2ah=numx2ah/denx2ah; 
 swx2ch=numx2ch/denx2ch; 
  
 *TRUNCATED HETEROSCEDASTIC NORMAL; 
 swx2a_th = numx2a_th/denx2a_th; 
 swx2c_th = numx2c_th/denx2c_th; 
 
 *USER WRITTEN HETERO NORMAL; 
 swx2ahu = numx2ahu/denx2ahu; 
 swx2chu = numx2chu/denx2chu; 
 
 *GAMMA; 
 swgx2a=numgx2a/dengx2a; 
 swgx2c=numgx2c/dengx2c; 
 
 *T; 
 swt1x2a=numt1x2a/dent1x2a; 
 swt1x2c=numt1x2c/dent1x2c; 
 
 swt3x2a=numt3x2a/dent3x2a; 
 swt3x2c=numt3x2c/dent3x2c; 
 
 swt5x2a=numt5x2a/dent5x2a; 
 swt5x2c=numt5x2c/dent5x2c; 
 
 *QUANTILE BINNING APPROACH; 
 *BECAUSE QUANTILES ARE USED, NUMERATOR PROBABILITIES ARE SIMPLY 1/#QUANTILES; 
 swcatx2a10 = (1/10)/dencata10; 
 swcatx2a15 = (1/15)/dencata15; 
 swcatx2a20 = (1/20)/dencata20; 
 
 swcatx2c10 = (1/10)/dencatc10; 
 swcatx2c15 = (1/15)/dencatc15; 
 swcatx2c20 = (1/20)/dencatc20; 
 
 merg=1; 
run; 
*FIND TRUNCATION VALUES; 
proc univariate data=b noprint;by h;var swx2a swx2c swx2ah swx2ch swx2ahu swx2chu swx2a_th 



swx2c_th swgx2a swgx2c; 
output out=ptile p1 =swx2a1 swx2c1 swx2ah1 swx2ch1 swx2ahu1 swx2chu1 swx2a_th1 swx2c_th1 
swgx2a1 swgx2c1  
        p99=swx2a99 swx2c99 swx2ah99 swx2ch99 swx2ahu99 swx2chu99 swx2a_th99 
swx2c_th99 swgx2a99 swgx2c99  
      p5 =swx2a5 swx2c5 swx2ah5 swx2ch5 swx2ahu5 swx2chu5 swx2a_th5 
swx2c_th5 swgx2a5 swgx2c5  
      p95=swx2a95 swx2c95 swx2ah95 swx2ch95 swx2ahu95 swx2chu95 
swx2a_th95 swx2c_th95 swgx2a95 swgx2c95  
      p10=swx2a10 swx2c10 swx2ah10 swx2ch10 swx2ahu10 swx2chu10 
swx2a_th10 swx2c_th10 swgx2a10 swgx2c10  
      p90=swx2a90 swx2c90 swx2ah90 swx2ch90 swx2ahu90 swx2chu90 
swx2a_th90 swx2c_th90 swgx2a90 swgx2c90; 
run; 
data ptile;set ptile;merg=1; 
*TRUNCATE STABILIZED WEIGHTS FROM NORMAL AND GAMMA MODELS; 
data cc;merge b ptile;by h merg; 
*NORMAL X2A AND X2C; 
swx2a199 = swx2a; 
if swx2a < swx2a1 then swx2a199 = swx2a1; 
if swx2a > swx2a99 then swx2a199 = swx2a99; 
 
swx2c199 = swx2c; 
if swx2c < swx2c1 then swx2c199 = swx2c1; 
if swx2c > swx2c99 then swx2c199 = swx2c99; 
 
swx2a595 = swx2a; 
if swx2a < swx2a5 then swx2a595 = swx2a5; 
if swx2a > swx2a95 then swx2a595 = swx2a95; 
 
swx2c595 = swx2c; 
if swx2c < swx2c5 then swx2c595 = swx2c5; 
if swx2c > swx2c95 then swx2c595 = swx2c95; 
 
swx2a1090 = swx2a; 
if swx2a < swx2a10 then swx2a1090 = swx2a10; 
if swx2a > swx2a90 then swx2a1090 = swx2a90; 
 
swx2c1090 = swx2c; 
if swx2c < swx2c10 then swx2c1090 = swx2c10; 
if swx2c > swx2c90 then swx2c1090 = swx2c90; 
 
*NORMAL HETEROSCEDASTIC X2A AND X2C; 
swx2ah199 = swx2ah; 
if swx2ah < swx2ah1 then swx2ah199 = swx2ah1; 
if swx2ah > swx2ah99 then swx2ah199 = swx2ah99; 
 
swx2ch199 = swx2ch; 
if swx2ch < swx2ch1 then swx2ch199 = swx2ch1; 
if swx2ch > swx2ch99 then swx2ch199 = swx2ch99; 
 
swx2ah595 = swx2ah; 
if swx2ah < swx2ah5 then swx2ah595 = swx2ah5; 
if swx2ah > swx2ah95 then swx2ah595 = swx2ah95; 
 
swx2ch595 = swx2ch; 
if swx2ch < swx2ch5 then swx2ch595 = swx2ch5; 
if swx2ch > swx2ch95 then swx2ch595 = swx2ch95; 
 
swx2ah1090 = swx2ah; 
if swx2ah < swx2ah10 then swx2ah1090 = swx2ah10; 
if swx2ah > swx2ah90 then swx2ah1090 = swx2ah90; 
 



swx2ch1090 = swx2ch; 
if swx2ch < swx2ch10 then swx2ch1090 = swx2ch10; 
if swx2ch > swx2ch90 then swx2ch1090 = swx2ch90; 
 
*TRUNCATED NORMAL HETEROSCEDASTIC X2A AND X2C; 
swx2a_th199 = swx2a_th; 
if swx2a_th < swx2a_th1 then swx2a_th199 = swx2a_th1; 
if swx2a_th > swx2a_th99 then swx2a_th199 = swx2a_th99; 
 
swx2c_th199 = swx2c_th; 
if swx2c_th < swx2c_th1 then swx2c_th199 = swx2c_th1; 
if swx2c_th > swx2c_th99 then swx2c_th199 = swx2c_th99; 
 
swx2a_th595 = swx2a_th; 
if swx2a_th < swx2a_th5 then swx2a_th595 = swx2a_th5; 
if swx2a_th > swx2a_th95 then swx2a_th595 = swx2a_th95; 
 
swx2c_th595 = swx2c_th; 
if swx2c_th < swx2c_th5 then swx2c_th595 = swx2c_th5; 
if swx2c_th > swx2c_th95 then swx2c_th595 = swx2c_th95; 
 
swx2a_th1090 = swx2a_th; 
if swx2a_th < swx2a_th10 then swx2a_th1090 = swx2a_th10; 
if swx2a_th > swx2a_th90 then swx2a_th1090 = swx2a_th90; 
 
swx2c_th1090 = swx2c_th; 
if swx2c_th < swx2c_th10 then swx2c_th1090 = swx2c_th10; 
if swx2c_th > swx2c_th90 then swx2c_th1090 = swx2c_th90; 
 
*USER WRITTEN NORMAL HETEROSCEDASTIC X2A AND X2C; 
swx2ahu199 = swx2ahu; 
if swx2ahu < swx2ahu1 thuen swx2ahu199 = swx2ahu1; 
if swx2ahu > swx2ahu99 thuen swx2ahu199 = swx2ahu99; 
 
swx2chu199 = swx2chu; 
if swx2chu < swx2chu1 then swx2chu199 = swx2chu1; 
if swx2chu > swx2chu99 then swx2chu199 = swx2chu99; 
 
swx2ahu595 = swx2ahu; 
if swx2ahu < swx2ahu5 then swx2ahu595 = swx2ahu5; 
if swx2ahu > swx2ahu95 then swx2ahu595 = swx2ahu95; 
 
swx2chu595 = swx2chu; 
if swx2chu < swx2chu5 then swx2chu595 = swx2chu5; 
if swx2chu > swx2chu95 then swx2chu595 = swx2chu95; 
 
swx2ahu1090 = swx2ahu; 
if swx2ahu < swx2ahu10 then swx2ahu1090 = swx2ahu10; 
if swx2ahu > swx2ahu90 then swx2ahu1090 = swx2ahu90; 
 
swx2chu1090 = swx2chu; 
if swx2chu < swx2chu10 then swx2chu1090 = swx2chu10; 
if swx2chu > swx2chu90 then swx2chu1090 = swx2chu90; 
 
*GAMMA X2A AND X2C; 
 
swgx2a199 = swgx2a; 
if swgx2a < swgx2a1 then swgx2a199 = swgx2a1; 
if swgx2a > swgx2a99 then swgx2a199 = swgx2a99; 
 
swgx2a595 = swgx2a; 
if swgx2a < swgx2a5 then swgx2a595 = swgx2a5; 
if swgx2a > swgx2a95 then swgx2a595 = swgx2a95; 



 
swgx2a1090 = swgx2a; 
if swgx2a < swgx2a10 then swgx2a1090 = swgx2a10; 
if swgx2a > swgx2a90 then swgx2a1090 = swgx2a90; 
 
swgx2c199 = swgx2c; 
if swgx2c < swgx2c1 then swgx2c199 = swgx2c1; 
if swgx2c > swgx2c99 then swgx2c199 = swgx2c99; 
 
swgx2c595 = swgx2c; 
if swgx2c < swgx2c5 then swgx2c595 = swgx2c5; 
if swgx2c > swgx2c95 then swgx2c595 = swgx2c95; 
 
swgx2c1090 = swgx2c; 
if swgx2c < swgx2c10 then swgx2c1090 = swgx2c10; 
if swgx2c > swgx2c90 then swgx2c1090 = swgx2c90; 
 
run; 
 
data c;set cc;keep  
 swx2a swx2c 
 swx2ah swx2ch 
 swx2ahu swx2chu 
 swx2a_th swx2c_th 
  
 swx2a199 swx2a595 swx2a1090  
 swx2c199 swx2c595 swx2c1090 
 swx2ah199 swx2ah595 swx2ah1090  
 swx2ch199 swx2ch595 swx2ch1090 
 swx2ahu199 swx2ahu595 swx2ahu1090  
 swx2chu199 swx2chu595 swx2chu1090 
 swx2a_th199 swx2a_th595 swx2a_th1090  
 swx2c_th199 swx2c_th595 swx2c_th1090 
 
 swgx2a swgx2c 
 swgx2a199 swgx2a595 swgx2a1090 
 swgx2c199 swgx2c595 swgx2c1090 
 
 swt1x2a swt1x2c 
 swt3x2a swt3x2c 
 swt5x2a swt5x2c 
 
 swcatx2a10 swcatx2c10 
 swcatx2a15 swcatx2c15 
 swcatx2a20 swcatx2c20  
 
 x2a y2a x2c y2c h id ;run; 
ods select all; 
proc means data=c min max mean nmiss maxdec=2; 
title "Distribution of Weights"; 
var  
 swx2a swx2c 
 swx2ah swx2ch  
 swx2ahu swx2chu 
 swx2a_th swx2c_th 
  
 swx2a199 swx2a595 swx2a1090  
 swx2c199 swx2c595 swx2c1090 
 swx2ah199 swx2ah595 swx2ah1090  
 swx2ch199 swx2ch595 swx2ch1090 
 swx2ahu199 swx2ahu595 swx2ahu1090  
 swx2chu199 swx2chu595 swx2chu1090 
 swx2a_th199 swx2a_th595 swx2a_th1090  



 swx2c_th199 swx2c_th595 swx2c_th1090 
 
 swgx2a swgx2c 
 swgx2a199 swgx2a595 swgx2a1090 
 swgx2c199 swgx2c595 swgx2c1090 
 
 swt1x2a swt1x2c 
 swt3x2a swt3x2c 
 swt5x2a swt5x2c 
 
 swcatx2a10 swcatx2c10 
 swcatx2a15 swcatx2c15 
 swcatx2a20 swcatx2c20 ; 
run;quit;run; 
*FINAL MODELS; 
ods select none; 
title "x2a"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta1(where=(parm = "x2a"));run; 
data beta1;set beta1;length type $ 10;type = "N"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal (1,99)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta2(where=(parm = "x2a"));run; 
data beta2;set beta2;length type $ 10;type = "N(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal (5,95)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta3(where=(parm = "x2a"));run; 
data beta3;set beta3;length type $ 10;type = "N(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal (10,90)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4(where=(parm = "x2a"));run; 
data beta4;set beta4;length type $ 10;type = "N(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ah; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a(where=(parm = "x2a"));run; 
data beta4a;set beta4a;length type $ 10;type = "NHc"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ah199; 



repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a1(where=(parm = "x2a"));run; 
data beta4a1;set beta4a1;length type $ 10;type = "NHc(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ah595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a2(where=(parm = "x2a"));run; 
data beta4a2;set beta4a2;length type $ 10;type = "NHc(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ah1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a3(where=(parm = "x2a"));run; 
data beta4a3;set beta4a3;length type $ 10;type = "NHc(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a_th; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a4(where=(parm = "x2a"));run; 
data beta4a4;set beta4a4;length type $ 10;type = "NHh"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a_th199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a5(where=(parm = "x2a"));run; 
data beta4a5;set beta4a5;length type $ 10;type = "NHh(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a_th595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a6(where=(parm = "x2a"));run; 
data beta4a6;set beta4a6;length type $ 10;type = "NHh(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2a_th1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a7(where=(parm = "x2a"));run; 
data beta4a7;set beta4a7;length type $ 10;type = "NHh(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ahu; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a8(where=(parm = "x2a"));run; 
data beta4a8;set beta4a8;length type $ 10;type = "NHu"; 
proc genmod data=c desc; 
by h;class id; 



title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ahu199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a9(where=(parm = "x2a"));run; 
data beta4a9;set beta4a9;length type $ 10;type = "NHu(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ahu595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a10(where=(parm = "x2a"));run; 
data beta4a10;set beta4a10;length type $ 10;type = "NHu(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swx2ahu1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4a11(where=(parm = "x2a"));run; 
data beta4a11;set beta4a11;length type $ 10;type = "NHu(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swgx2a; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4b(where=(parm = "x2a"));run; 
data beta4b;set beta4b;length type $ 10;type = "G"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swgx2a199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4b1(where=(parm = "x2a"));run; 
data beta4b1;set beta4b1;length type $ 10;type = "G(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swgx2a595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4b2(where=(parm = "x2a"));run; 
data beta4b2;set beta4b2;length type $ 10;type = "G(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swgx2a1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta4b3(where=(parm = "x2a"));run; 
data beta4b3;set beta4b3;length type $ 10;type = "G(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (1df)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swt1x2a; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta5(where=(parm = "x2a"));run; 



data beta5;set beta5;length type $ 10;type = "t1"; 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (3df)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swt3x2a; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta6(where=(parm = "x2a"));run; 
data beta6;set beta6;length type $ 10;type = "t3"; 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (5df)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swt5x2a; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta7(where=(parm = "x2a"));run; 
data beta7;set beta7;length type $ 10;type = "t5"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Quantile Binning (10)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swcatx2a10; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta8(where=(parm = "x2a"));run; 
data beta8;set beta8;length type $ 10;type = "QB10"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Quantile Binning (15)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swcatx2a15; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta9(where=(parm = "x2a"));run; 
data beta9;set beta9;length type $ 10;type = "QB15"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Quantile Binning (20)"; 
model y2a = x2a / dist=bin maxiter=100; 
weight swcatx2a20; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta10(where=(parm = "x2a"));run; 
data beta10;set beta10;length type $ 10;type = "QB20"; 
run; 
 
title "x2c"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta11(where=(parm = "x2c"));run; 
data beta11;set beta11;length type $ 10;type = "N"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal (1,99)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta12(where=(parm = "x2c"));run; 
data beta12;set beta12;length type $ 10;type = "N(1,99)"; 
proc genmod data=c desc; 
by h;class id; 



title2 "Standard Normal (5,95)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta13(where=(parm = "x2c"));run; 
data beta13;set beta13;length type $ 10;type = "N(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal (10,90)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14(where=(parm = "x2c"));run; 
data beta14;set beta14;length type $ 10;type = "N(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2ch; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a(where=(parm = "x2c"));run; 
data beta14a;set beta14a;length type $ 10;type = "NHc"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2ch199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a1(where=(parm = "x2c"));run; 
data beta14a1;set beta14a1;length type $ 10;type = "NHc(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2ch595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a2(where=(parm = "x2c"));run; 
data beta14a2;set beta14a2;length type $ 10;type = "NHc(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Cerda)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2ch1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a3(where=(parm = "x2c"));run; 
data beta14a3;set beta14a3;length type $ 10;type = "NHc(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c_th; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a4(where=(parm = "x2c"));run; 
data beta14a4;set beta14a4;length type $ 10;type = "NHh"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c_th199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a5(where=(parm = "x2c"));run; 



data beta14a5;set beta14a5;length type $ 10;type = "NHh(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c_th595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a6(where=(parm = "x2c"));run; 
data beta14a6;set beta14a6;length type $ 10;type = "NHh(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Hernan)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2c_th1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a7(where=(parm = "x2c"));run; 
data beta14a7;set beta14a7;length type $ 10;type = "NHh(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2chu; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a8(where=(parm = "x2c"));run; 
data beta14a8;set beta14a8;length type $ 10;type = "NHu"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2chu199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a9(where=(parm = "x2c"));run; 
data beta14a9;set beta14a9;length type $ 10;type = "NHu(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2chu595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a10(where=(parm = "x2c"));run; 
data beta14a10;set beta14a10;length type $ 10;type = "NHu(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Standard Normal Heteroscedastic (Naimi)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swx2chu1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14a11(where=(parm = "x2c"));run; 
data beta14a11;set beta14a11;length type $ 10;type = "NHu(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swgx2c; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14b(where=(parm = "x2c"));run; 
data beta14b;set beta14b;length type $ 10;type = "G"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma(1,99)"; 
model y2c = x2c / dist=bin maxiter=100; 



weight swgx2c199; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14c(where=(parm = "x2c"));run; 
data beta14c;set beta14c;length type $ 10;type = "G(1,99)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma(5,95)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swgx2c595; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14d(where=(parm = "x2c"));run; 
data beta14d;set beta14d;length type $ 10;type = "G(5,95)"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Gamma(10,90)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swgx2c1090; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta14e(where=(parm = "x2c"));run; 
data beta14e;set beta14e;length type $ 10;type = "G(10,90)"; 
 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (1df)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swt1x2c; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta15(where=(parm = "x2c"));run; 
data beta15;set beta15;length type $ 10;type = "t1"; 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (3df)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swt3x2c; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta16(where=(parm = "x2c"));run; 
data beta16;set beta16;length type $ 10;type = "t3"; 
proc genmod data=c desc; 
by h;class id; 
title2 "t-Distribution (5df)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swt5x2c; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta17(where=(parm = "x2c"));run; 
data beta17;set beta17;length type $ 10;type = "t5"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Quantile Binning (10)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swcatx2c10; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta18(where=(parm = "x2c"));run; 
data beta18;set beta18;length type $ 10;type = "QB10"; 
proc genmod data=c desc; 
by h;class id; 
title2 "Quantile Binning (15)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swcatx2c15; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta19(where=(parm = "x2c"));run; 
data beta19;set beta19;length type $ 10;type = "QB15"; 
proc genmod data=c desc; 
by h;class id; 



title2 "Quantile Binning (20)"; 
model y2c = x2c / dist=bin maxiter=100; 
weight swcatx2c20; 
repeated subject=id / type=ind; 
ods output GEEEmpPEst=beta20(where=(parm = "x2c"));run; 
data beta20;set beta20;length type $ 10;type = "QB20"; 
run; 
title;title2; 
ods select all; 
*COMPUTE BIAS AND MSE; 
data beta; 
 set beta1-beta10 beta4a beta4a1-beta4a11 beta4b beta4b1-beta4b3 beta11-beta20 beta14a 
beta14a1-beta14a11 beta14b beta14c beta14d beta14e; 
 merg=1; 
data bias; 
 merge meancheck beta; 
 by merg; 
 if parm = "x2a" then do; bias = estimate - truex2a;  mse = (estimate - 
truex2a)**2;end; 
 if parm = "x2c" then do; bias = estimate - truex2c;  mse = (estimate - 
truex2c)**2;end; 
 
 if type="QB20" then typen=1; 
 if type="QB15" then typen=2; 
 if type="QB10" then typen=3; 
 
 if type="G(10,90)" then typen=4; 
 if type="G(5,95)" then typen=5; 
 if type="G(1,99)" then typen=6; 
 if type="G" then typen=7; 
 
 if type="t5" then typen=8; 
 if type="t3" then typen=9; 
 if type="t1" then typen=10; 
 
 if type="NHu(10,90)" then typen=11; 
 if type="NHu(5,95)" then typen=12; 
 if type="NHu(1,99)" then typen=13; 
 if type="NHu" then typen=14; 
 
 if type="NHh(10,90)" then typen=15; 
 if type="NHh(5,95)" then typen=16; 
 if type="NHh(1,99)" then typen=17; 
 if type="NHh" then typen=18; 
  
 if type="NHc(10,90)" then typen=19; 
 if type="NHc(5,95)" then typen=20; 
 if type="NHc(1,99)" then typen=21; 
 if type="NHc" then typen=22; 
 
 if type="N(10,90)" then typen=23; 
 if type="N(5,95)" then typen=24; 
 if type="N(1,99)" then typen=25; 
 if type="N" then typen=26; 
 
run; 
proc format; 
 value tpn 1 = "QB20" 
     2 = "QB15" 
     3 = "QB10" 
 
     4 = "G(10,90)" 
     5 = "G(5,95)"  



    6 = "G(1,99)"  
    7 = "G" 
 
    8 = "t5"  
    9 = "t3"  
    10 = "t1"  
 
    11 = "NHu(10,90)" 
    12 = "NHu(5,95)"  
    13 = "NHu(1,99)"  
    14 = "NHu"  
 
    15 = "NHh(10,90)" 
    16 = "NHh(5,95)"  
    17 = "NHh(1,99)"  
    18 = "NHh"  
 
    19 = "NHc(10,90)" 
    20 = "NHc(5,95)"  
    21 = "NHc(1,99)"  
    22 = "NHc"  
 
    23 = "N(10,90)"  
    24 = "N(5,95)"  
    25 = "N(1,99)"  
    26 = "N"  
; 
*RESULTS; 
proc sort data=bias;by parm typen;run; 
proc means data=bias mean maxdec=4; 
class parm typen; 
var bias mse;format typen tpn.;run; 
proc univariate data=bias noprint; 
class parm type; 
var bias;histogram; 
run;quit;run; 
*END; 
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