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usual formulation of a causal hypothesis in terms of
counterfactual conditionals is: “If this sick person had not
been exposed, the disease would not have occurred.”
Applied to a cohort, it is translated: “If these people had
not been exposed, the incidence of disease would have
been lower.” This formulation does not work for case-
control studies, because the condition “If the cases had
not been exposed” automatically makes the exposure
odds zero. But suppose we reformulate the condition as:
“If the cases had all been given a preventive that severed
the link between exposure and disease.” Now the expo-
sure odds among cases (in this counterfactual scenario)
would be expected to equal the odds in the denominator
population that produced the cases.

In other words, “case-counterfactual” (that is, case-
control) studies ask the question: what is the ratio be-
tween the observed exposure odds and the expected
exposure odds that would have been observed among
cases if the effect(s) of exposure had been prevented?
Sometimes, an actual control group is not needed to
answer this question; for example, among cases of schizo-
phrenia, males substantially outnumber females. We do
not need a control group to know that, in the absence of
a gender effect (or serious confounding), the sex ratio
should be about 1. Likewise, the case-specular design
does not need an actual control group if power lines are
allocated randomly to this or that side of the street:
case-houses’ exposure odds (where “exposed” means the
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power line was on the near side of the street, and
“unexposed” means it was on the far side) can be com-
pared with the exposure odds of 1, which is the expected
odds if allocation were balanced.

The case-specular design may have only a narrow

——range of applications, mainly in environmental epidemi-_

ology, but it shows that counterfactual definitions of
causation have practical, not just theoretical, impor-
tance. Careful study of it may inspire the invention of
other designs in which controls are counterfactuals.
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That Confounded P-Value

A P-value cannot convey unambiguous information
about any relation between exposure and disease. It is
inherently confounded information—a mix of infor-
mation about the size of the effect and the size of the
study.! Epidemiologists are typically expert in dealing
with confounded measures of effect, using standard
techniques to factor crude effects explicitly into two
components, one due to the effect of the exposure and
the other due to the effect of the confounder (or
confounders).>’ Unfortunately, there has not been
similar vigor in disentangling the components of a
P-value. It continues to be used mistakenly as a
measure of the importance and credibility of study
results.

Epidemiology has a longstanding policy of discourag-
ing the use of statistical significance testing, that prac-
tice that judges study results according to whether a
P-value exceeds or does not exceed a standard yet arbi-
trary cutoff value.>7 Nevertheless, we have not always
discouraged the presentation of P-values outside of the
context of explicit statistical significance testing. The
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most common situation for which the reader will en-
counter P-values in the journal is in the evaluation of
trend data. Yet P-values associated with trend data are as
confounded as P-values that relate to the difference
between two groups.

When editing the article by Cantor and col-
leagues® that appears in this issue, we suggested to the
authors that they omit all P-values from the manu-
script. The authors agreed to delete most, but they
preferred to include P-values for their evaluations of
trend. Since we have often published articles that
included P-values that were used in much the same
way as in the Cantor et al study, we felt that, as a
matter of fairness and consistency, we should abide by
the authors’ wishes and allow those P-values in the
journal article.

Nevertheless, the discussion prompted us to revisit our
editorial policy with regard to reporting P-values. P-
values are commonly reported for various tests that re-
late to epidemiologic analyses, such as a test of the
departure of an odds ratio from unity, tests of trend
(linear or otherwise), tests of homogeneity, tests of in-
teractions, tests of assumptions underlying the use of
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FIGURE 1. Rate ratio of bladder cancer by years of con-
sumption of chlorinated water for males and females.8

specific analytical tools, and tests of the comparison of
different models, to name a few prominent examples. For
all of these, the P-value that results from the test is a
confounded mix of the magnitude of the underlying
measure and the precision of the measure. We believe
that we will serve our readers better by discouraging the
reporting of confounded information. Therefore, we in-
tend to discourage the reporting of P-values in any
context in which the confounded elements can be con-
veniently separated, either numerically, graphically, or
otherwise.

For tests of the difference between groups, the prac-
tice of summarizing information about effect size and
study size with a P-value has long been criticized.>?
Increasingly in epidemiologic reports, but by no
means universally, the two pieces of information that
are mixed in the P-value are being reported separately.
The size of the effect is estimated by one or more
epidemiologic parameters, such as rate or risk differ-
ence, rate or risk ratio, or the proportion of disease
attributed to the exposure. The precision of the esti-
mate, a function of the size of the study, is described
either by a standard error estimate or by reporting a
confidence interval around the estimate of effect; the
spread of the confidence interval indicates the
amount of precision in the estimate.?12

For trend data, one can report an estimate of the
slope of a trend line, with its standard error or confi-
dence interval. It is also useful to graph results to
examine trends. Scattergrams or smoothed trend lines
can depict complicated relations more clearly than
P-values, which are often based on assumptions the
reader cannot easily judge. Consider, for example, the
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graph presented in Figure 1, showing the trends in risk
of bladder cancer for males and females with increas-
ing duration of exposure to chlorinated water from
any source, based on data in Table 4 of the article by
Cantor et al.® These graphs convey more information
than the P-values for trend of 0.002 (males) and 0.88
(females). No one could infer the curves from the
P-values. Given the curves, no one needs these P-
values. Rather, it is the shape of the curves, and the
precision of their component measurements, that con-
vey the essential information.

Presently, it would be too dogmatic simply to ban
the reporting of all P-values from Epidemiology. How-
ever regrettable, the practice of calculating and re-
porting P-values is nearly ubiquitous. In addition, we
appreciate that there may be some situations, such as
goodness-of-fit evaluations, in which an alternative to
the P-value is not readily available. Nevertheless, the
point remains that the P-value is confounded datum,
mixing precision with whatever is being measured, be
it the fit of a model or the magnitude of a rate ratio.
We can tolerate confounded measures when better
alternatives are not close at hand, but only reluc-
tantly. By highlighting the confounded nature of P-
values, we hope to prompt authors to find better ways
to separate the core elements of any P-value, much
the way that point estimates of rate differences or rate
ratios and their confidence intervals have already
begun to replace P-values for the comparison of two
rates.
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